Year: 2010
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 5 : pp. 645–675
Abstract
In this paper, we study adaptive finite element discretisation schemes for a class of parameter estimation problem. We propose to use adaptive multi-meshes in developing efficient algorithms for the estimation problem. We derive equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The error estimators are then implemented and tested with promising numerical results.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.2009.10-m1016
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 5 : pp. 645–675
Published online: 2010-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 31
Keywords: Parameter estimation Finite element approximation Adaptive finite element methods A posteriori error estimate.
-
Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian
Wang, Fangyuan | Wang, Qiming | Zhou, ZhaojieCalcolo, Vol. 61 (2024), Iss. 4
https://doi.org/10.1007/s10092-024-00611-2 [Citations: 0] -
Adaptive finite element approximation for a class of parameter estimation problems
Chang, Yanzhen | Yang, Danping | Zhang, ZhijuanApplied Mathematics and Computation, Vol. 231 (2014), Iss. P.284
https://doi.org/10.1016/j.amc.2013.12.141 [Citations: 1] -
Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
Lu, Zuliang | Zhang, Shuhua | Hou, Chuanjuan | Liu, HongyanBoundary Value Problems, Vol. 2016 (2016), Iss. 1
https://doi.org/10.1186/s13661-016-0562-2 [Citations: 0] -
Second-order time discretization for reaction coefficient estimation of bilinear parabolic optimization problem with Neumann boundary conditions
Yang, Caijie | Sun, TongjunComputers & Mathematics with Applications, Vol. 140 (2023), Iss. P.211
https://doi.org/10.1016/j.camwa.2023.04.016 [Citations: 2] -
A Posteriori Verification of Optimality Conditions for Control Problems with Finite-Dimensional Control Space
Akindeinde, Saheed | Wachsmuth, DanielNumerical Functional Analysis and Optimization, Vol. 33 (2012), Iss. 5 P.473
https://doi.org/10.1080/01630563.2011.650810 [Citations: 1] -
System Modeling and Optimization
Adaptive Methods for Control Problems with Finite-Dimensional Control Space
Akindeinde, Saheed | Wachsmuth, Daniel2013
https://doi.org/10.1007/978-3-642-36062-6_6 [Citations: 0] -
A Posteriori Error Estimates for an Optimal Control Problem with a Bilinear State Equation
Fuica, Francisco | Otárola, EnriqueJournal of Optimization Theory and Applications, Vol. 194 (2022), Iss. 2 P.543
https://doi.org/10.1007/s10957-022-02039-6 [Citations: 2] -
Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems
Hua, Yuchun | Tang, YuelongResults in Applied Mathematics, Vol. 22 (2024), Iss. P.100445
https://doi.org/10.1016/j.rinam.2024.100445 [Citations: 0] -
BDF2 schemes for optimal parameter control problems governed by bilinear parabolic equations
Yang, Caijie | Sun, TongjunOptimal Control Applications and Methods, Vol. 44 (2023), Iss. 4 P.2055
https://doi.org/10.1002/oca.2964 [Citations: 1] -
An efficient NFEM for optimal control problems governed by a bilinear state equation
Guan, Hongbo | Shi, DongyangComputers & Mathematics with Applications, Vol. 77 (2019), Iss. 7 P.1821
https://doi.org/10.1016/j.camwa.2018.11.017 [Citations: 7] -
New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems
Lu, Zuliang | Liu, Hongyan | Hou, Chunjuan | Cao, LongzhouJournal of Inequalities and Applications, Vol. 2016 (2016), Iss. 1
https://doi.org/10.1186/s13660-016-0994-3 [Citations: 0] -
A stabilized mixed finite element approximation of bilinear state optimal control problems
Fu, Hongfei | Guo, Hui | Hou, Jian | Zhang, JiansongComputers & Mathematics with Applications, Vol. 74 (2017), Iss. 6 P.1246
https://doi.org/10.1016/j.camwa.2017.06.010 [Citations: 3] -
Finite element approximation for a class of parameter estimation problems
Chang, Yanzhen | Yang, DanpingJournal of Systems Science and Complexity, Vol. 27 (2014), Iss. 5 P.866
https://doi.org/10.1007/s11424-014-1218-x [Citations: 6] -
Bilinear Optimal Control for the Fractional Laplacian: Analysis and Discretization
Bersetche, Francisco | Fuica, Francisco | Otárola, Enrique | Quero, DanielSIAM Journal on Numerical Analysis, Vol. 62 (2024), Iss. 3 P.1344
https://doi.org/10.1137/23M154947X [Citations: 2]