Adaptive Finite Element Approximation for a Class of Parameter Estimation Problems

Adaptive Finite Element Approximation for a Class of Parameter Estimation Problems

Year:    2010

Journal of Computational Mathematics, Vol. 28 (2010), Iss. 5 : pp. 645–675

Abstract

In this paper, we study adaptive finite element discretisation schemes for a class of parameter estimation problem. We propose to use adaptive multi-meshes in developing efficient algorithms for the estimation problem. We derive equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The error estimators are then implemented and tested with promising numerical results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.2009.10-m1016

Journal of Computational Mathematics, Vol. 28 (2010), Iss. 5 : pp. 645–675

Published online:    2010-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    31

Keywords:    Parameter estimation Finite element approximation Adaptive finite element methods A posteriori error estimate.

  1. Adaptive finite element approximation of bilinear optimal control problem with fractional Laplacian

    Wang, Fangyuan | Wang, Qiming | Zhou, Zhaojie

    Calcolo, Vol. 61 (2024), Iss. 4

    https://doi.org/10.1007/s10092-024-00611-2 [Citations: 0]
  2. Adaptive finite element approximation for a class of parameter estimation problems

    Chang, Yanzhen | Yang, Danping | Zhang, Zhijuan

    Applied Mathematics and Computation, Vol. 231 (2014), Iss. P.284

    https://doi.org/10.1016/j.amc.2013.12.141 [Citations: 1]
  3. Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems

    Lu, Zuliang | Zhang, Shuhua | Hou, Chuanjuan | Liu, Hongyan

    Boundary Value Problems, Vol. 2016 (2016), Iss. 1

    https://doi.org/10.1186/s13661-016-0562-2 [Citations: 0]
  4. Second-order time discretization for reaction coefficient estimation of bilinear parabolic optimization problem with Neumann boundary conditions

    Yang, Caijie | Sun, Tongjun

    Computers & Mathematics with Applications, Vol. 140 (2023), Iss. P.211

    https://doi.org/10.1016/j.camwa.2023.04.016 [Citations: 2]
  5. A Posteriori Verification of Optimality Conditions for Control Problems with Finite-Dimensional Control Space

    Akindeinde, Saheed | Wachsmuth, Daniel

    Numerical Functional Analysis and Optimization, Vol. 33 (2012), Iss. 5 P.473

    https://doi.org/10.1080/01630563.2011.650810 [Citations: 1]
  6. System Modeling and Optimization

    Adaptive Methods for Control Problems with Finite-Dimensional Control Space

    Akindeinde, Saheed | Wachsmuth, Daniel

    2013

    https://doi.org/10.1007/978-3-642-36062-6_6 [Citations: 0]
  7. A Posteriori Error Estimates for an Optimal Control Problem with a Bilinear State Equation

    Fuica, Francisco | Otárola, Enrique

    Journal of Optimization Theory and Applications, Vol. 194 (2022), Iss. 2 P.543

    https://doi.org/10.1007/s10957-022-02039-6 [Citations: 2]
  8. Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems

    Hua, Yuchun | Tang, Yuelong

    Results in Applied Mathematics, Vol. 22 (2024), Iss. P.100445

    https://doi.org/10.1016/j.rinam.2024.100445 [Citations: 0]
  9. BDF2 schemes for optimal parameter control problems governed by bilinear parabolic equations

    Yang, Caijie | Sun, Tongjun

    Optimal Control Applications and Methods, Vol. 44 (2023), Iss. 4 P.2055

    https://doi.org/10.1002/oca.2964 [Citations: 1]
  10. An efficient NFEM for optimal control problems governed by a bilinear state equation

    Guan, Hongbo | Shi, Dongyang

    Computers & Mathematics with Applications, Vol. 77 (2019), Iss. 7 P.1821

    https://doi.org/10.1016/j.camwa.2018.11.017 [Citations: 7]
  11. New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems

    Lu, Zuliang | Liu, Hongyan | Hou, Chunjuan | Cao, Longzhou

    Journal of Inequalities and Applications, Vol. 2016 (2016), Iss. 1

    https://doi.org/10.1186/s13660-016-0994-3 [Citations: 0]
  12. A stabilized mixed finite element approximation of bilinear state optimal control problems

    Fu, Hongfei | Guo, Hui | Hou, Jian | Zhang, Jiansong

    Computers & Mathematics with Applications, Vol. 74 (2017), Iss. 6 P.1246

    https://doi.org/10.1016/j.camwa.2017.06.010 [Citations: 3]
  13. Finite element approximation for a class of parameter estimation problems

    Chang, Yanzhen | Yang, Danping

    Journal of Systems Science and Complexity, Vol. 27 (2014), Iss. 5 P.866

    https://doi.org/10.1007/s11424-014-1218-x [Citations: 6]
  14. Bilinear Optimal Control for the Fractional Laplacian: Analysis and Discretization

    Bersetche, Francisco | Fuica, Francisco | Otárola, Enrique | Quero, Daniel

    SIAM Journal on Numerical Analysis, Vol. 62 (2024), Iss. 3 P.1344

    https://doi.org/10.1137/23M154947X [Citations: 2]