Error Estimates for the Recursive Linearization of Inverse Medium Problems

Error Estimates for the Recursive Linearization of Inverse Medium Problems

Year:    2010

Journal of Computational Mathematics, Vol. 28 (2010), Iss. 6 : pp. 725–744

Abstract

This paper is devoted to the mathematical analysis of a general recursive linearization algorithm for solving inverse medium problems with multi-frequency measurements. Under some reasonable assumptions, it is shown that the algorithm is convergent with error estimates. The work is motivated by our effort to analyze recent significant numerical results for solving inverse medium problems. Based on the uncertainty principle, the recursive linearization allows the nonlinear inverse problems to be reduced to a set of linear problems and be solved recursively in a proper order according to the measurements. As an application, the convergence of the recursive linearization algorithm [Chen, Inverse Problems 13(1997), pp.253-282] is established for solving the acoustic inverse scattering problem.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.1003-m0004

Journal of Computational Mathematics, Vol. 28 (2010), Iss. 6 : pp. 725–744

Published online:    2010-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:    Recursive linearization Tikhonov regularization Inverse problems Convergence analysis.

  1. Regularizing a final value problem for nonlinear modified Helmholtz equation with randomly perturbed data

    Hoang, Quan Pham | Trung, Hieu Phan | Vo Van, Canh

    Applicable Analysis, Vol. 102 (2023), Iss. 2 P.610

    https://doi.org/10.1080/00036811.2021.1960317 [Citations: 0]
  2. Inverse Obstacle Scattering in Two Dimensions with Multiple Frequency Data and Multiple Angles of Incidence

    Borges, Carlos | Greengard, Leslie

    SIAM Journal on Imaging Sciences, Vol. 8 (2015), Iss. 1 P.280

    https://doi.org/10.1137/140982787 [Citations: 15]
  3. Reconstruction of a defect in an open waveguide

    Bao, Gang | Triki, Faouzi

    Science China Mathematics, Vol. 56 (2013), Iss. 12 P.2539

    https://doi.org/10.1007/s11425-013-4696-8 [Citations: 6]
  4. Inverse scattering reconstruction of a three dimensional sound-soft axis-symmetric impenetrable object *

    Borges, Carlos | Lai, Jun

    Inverse Problems, Vol. 36 (2020), Iss. 10 P.105005

    https://doi.org/10.1088/1361-6420/abac9b [Citations: 5]
  5. Fourier method for recovering acoustic sources from multi-frequency far-field data

    Wang, Xianchao | Guo, Yukun | Zhang, Deyue | Liu, Hongyu

    Inverse Problems, Vol. 33 (2017), Iss. 3 P.035001

    https://doi.org/10.1088/1361-6420/aa573c [Citations: 36]
  6. High Resolution Inverse Scattering in Two Dimensions Using Recursive Linearization

    Borges, Carlos | Gillman, Adrianna | Greengard, Leslie

    SIAM Journal on Imaging Sciences, Vol. 10 (2017), Iss. 2 P.641

    https://doi.org/10.1137/16M1093562 [Citations: 27]
  7. New Stability Estimates for the Inverse Medium Problem with Internal Data

    Choulli, Mourad | Triki, Faouzi

    SIAM Journal on Mathematical Analysis, Vol. 47 (2015), Iss. 3 P.1778

    https://doi.org/10.1137/140988577 [Citations: 7]
  8. Uniqueness and modified Newton method for cracks from the far field patterns with a fixed incident direction

    Li, Jialei | Liu, Xiaodong

    Inverse Problems, Vol. 40 (2024), Iss. 12 P.125014

    https://doi.org/10.1088/1361-6420/ad904d [Citations: 0]
  9. On the robustness of inverse scattering for penetrable, homogeneous objects with complicated boundary

    Borges, Carlos | Rachh, Manas | Greengard, Leslie

    Inverse Problems, Vol. 39 (2023), Iss. 3 P.035004

    https://doi.org/10.1088/1361-6420/acb2ec [Citations: 1]
  10. Regularization and numerical solution of the inverse scattering problem using shearlet frames

    Kutyniok, Gitta | Mehrmann, Volker | Petersen, Philipp C.

    Journal of Inverse and Ill-posed Problems, Vol. 25 (2017), Iss. 3 P.287

    https://doi.org/10.1515/jiip-2015-0048 [Citations: 3]
  11. Recursive linearization method for inverse medium scattering problems with complex mixture Gaussian error learning

    Jia, Junxiong | Wu, Bangyu | Peng, Jigen | Gao, Jinghuai

    Inverse Problems, Vol. 35 (2019), Iss. 7 P.075003

    https://doi.org/10.1088/1361-6420/ab08f2 [Citations: 6]
  12. A multi-frequency iterative imaging method for discontinuous inverse medium problem

    Zhang, Lei | Feng, Lixin

    Journal of Computational Physics, Vol. 362 (2018), Iss. P.290

    https://doi.org/10.1016/j.jcp.2018.02.026 [Citations: 0]
  13. Inverse medium scattering from periodic structures with fixed-direction incoming waves

    Gibson, Peter | Hu, Guanghui | Zhao, Yue

    Inverse Problems, Vol. 34 (2018), Iss. 7 P.075011

    https://doi.org/10.1088/1361-6420/aac3ad [Citations: 0]
  14. Numerical Reconstruction of Electromagnetic Inclusions in Three Dimensions

    Bao, Gang | Lin, Junshan | Mefire, Séraphin M.

    SIAM Journal on Imaging Sciences, Vol. 7 (2014), Iss. 1 P.558

    https://doi.org/10.1137/130937640 [Citations: 11]
  15. On the series solutions of integral equations in scattering

    Triki, Faouzi | Karamehmedović, Mirza

    Comptes Rendus. Mathématique, Vol. 362 (2024), Iss. G9 P.1023

    https://doi.org/10.5802/crmath.621 [Citations: 0]
  16. Inverse scattering problems with multi-frequencies

    Bao, Gang | Li, Peijun | Lin, Junshan | Triki, Faouzi

    Inverse Problems, Vol. 31 (2015), Iss. 9 P.093001

    https://doi.org/10.1088/0266-5611/31/9/093001 [Citations: 112]
  17. Inverse acoustic obstacle scattering problems using multifrequency measurements

    Sini, Mourad | Trung Thành, Nguyen

    Inverse Problems & Imaging, Vol. 6 (2012), Iss. 4 P.749

    https://doi.org/10.3934/ipi.2012.6.749 [Citations: 25]
  18. Maxwell’s Equations in Periodic Structures

    Near-Field Imaging

    Bao, Gang | Li, Peijun

    2022

    https://doi.org/10.1007/978-981-16-0061-6_6 [Citations: 0]
  19. Encyclopedia of Applied and Computational Mathematics

    Overview of Inverse Problems

    McLaughlin, Joyce R.

    2015

    https://doi.org/10.1007/978-3-540-70529-1_586 [Citations: 0]
  20. Recovering point sources for the inhomogeneous Helmholtz equation *

    Bao, Gang | Liu, Yuantong | Triki, Faouzi

    Inverse Problems, Vol. 37 (2021), Iss. 9 P.095005

    https://doi.org/10.1088/1361-6420/ac164b [Citations: 5]
  21. A multi-frequency inverse source problem

    Bao, Gang | Lin, Junshan | Triki, Faouzi

    Journal of Differential Equations, Vol. 249 (2010), Iss. 12 P.3443

    https://doi.org/10.1016/j.jde.2010.08.013 [Citations: 120]
  22. A numerical study on the stability of a class of Helmholtz problems

    Du, Kui | Li, Buyang | Sun, Weiwei

    Journal of Computational Physics, Vol. 287 (2015), Iss. P.46

    https://doi.org/10.1016/j.jcp.2015.02.008 [Citations: 9]
  23. Inverse Wave-Number-Dependent Source Problems for the Helmholtz Equation

    Guo, Hongxia | Hu, Guanghui

    SIAM Journal on Numerical Analysis, Vol. 62 (2024), Iss. 3 P.1372

    https://doi.org/10.1137/23M1572696 [Citations: 1]
  24. Regularized recursive Newton-type methods for inverse scattering problems using multifrequency measurements

    Sini, Mourad | Thành, Nguyen Trung

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 49 (2015), Iss. 2 P.459

    https://doi.org/10.1051/m2an/2014040 [Citations: 5]
  25. Multifrequency Iterative Methods for the Inverse Medium Scattering Problems in Elasticity

    Bao, Gang | Yin, Tao | Zeng, Fang

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 4 P.B721

    https://doi.org/10.1137/18M1220844 [Citations: 6]
  26. Inverse Problems and Related Topics

    An Inverse Conductivity Problem in Multifrequency Electric Impedance Tomography

    Cheng, Jin | Choulli, Mourad | Lu, Shuai

    2020

    https://doi.org/10.1007/978-981-15-1592-7_1 [Citations: 0]
  27. Imaging of Local Surface Displacement on an Infinite Ground Plane: The Multiple Frequency Case

    Bao, Gang | Lin, Junshan

    SIAM Journal on Applied Mathematics, Vol. 71 (2011), Iss. 5 P.1733

    https://doi.org/10.1137/110824644 [Citations: 42]
  28. Stability for the multifrequency inverse medium problem

    Bao, Gang | Triki, Faouzi

    Journal of Differential Equations, Vol. 269 (2020), Iss. 9 P.7106

    https://doi.org/10.1016/j.jde.2020.05.021 [Citations: 13]
  29. Near-field imaging of periodic inhomogeneous media

    Zhang, Ruming | Zhang, Bo

    Inverse Problems, Vol. 30 (2014), Iss. 4 P.045004

    https://doi.org/10.1088/0266-5611/30/4/045004 [Citations: 3]
  30. Stable Determination of a Scattered Wave from its Far-Field Pattern: The High Frequency Asymptotics

    Rondi, Luca | Sini, Mourad

    Archive for Rational Mechanics and Analysis, Vol. 218 (2015), Iss. 1 P.1

    https://doi.org/10.1007/s00205-015-0855-0 [Citations: 10]
  31. Linearized Inverse Schrödinger Potential Problem at a Large Wavenumber

    Isakov, Victor | Lu, Shuai | Xu, Boxi

    SIAM Journal on Applied Mathematics, Vol. 80 (2020), Iss. 1 P.338

    https://doi.org/10.1137/18M1226932 [Citations: 13]
  32. Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities*

    Lu, Shuai | Salo, Mikko | Xu, Boxi

    Inverse Problems, Vol. 38 (2022), Iss. 6 P.065009

    https://doi.org/10.1088/1361-6420/ac637a [Citations: 5]
  33. Multifrequency inverse obstacle scattering with unknown impedance boundary conditions using recursive linearization

    Borges, Carlos | Rachh, Manas

    Advances in Computational Mathematics, Vol. 48 (2022), Iss. 1

    https://doi.org/10.1007/s10444-021-09915-1 [Citations: 3]
  34. A domain decomposition preconditioning for an inverse volume scattering problem

    Borges, Carlos | Biros, George

    Inverse Problems, Vol. 36 (2020), Iss. 3 P.035016

    https://doi.org/10.1088/1361-6420/ab6e78 [Citations: 0]
  35. Inverse Boundary Value Problem For The Helmholtz Equation: Quantitative Conditional Lipschitz Stability Estimates

    Beretta, Elena | de Hoop, Maarten V. | Faucher, Florian | Scherzer, Otmar

    SIAM Journal on Mathematical Analysis, Vol. 48 (2016), Iss. 6 P.3962

    https://doi.org/10.1137/15M1043856 [Citations: 21]
  36. Inverse medium scattering problems with Kalman filter techniques

    Furuya, Takashi | Potthast, Roland

    Inverse Problems, Vol. 38 (2022), Iss. 9 P.095003

    https://doi.org/10.1088/1361-6420/ac836f [Citations: 0]
  37. Convergence analysis of a multi-frequency derivative-free Landweber iteration method for the inverse scattering

    Liu, Shuqin

    2022 Asia Conference on Electrical, Power and Computer Engineering (EPCE 2022), (2022), P.1

    https://doi.org/10.1145/3529299.3530213 [Citations: 0]
  38. An inverse source problem with multiple frequency data

    Bao, Gang | Lin, Junshan | Triki, Faouzi

    Comptes Rendus. Mathématique, Vol. 349 (2011), Iss. 15-16 P.855

    https://doi.org/10.1016/j.crma.2011.07.009 [Citations: 15]