Year: 2010
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 6 : pp. 837–847
Abstract
Recently, computational results demonstrated remarkable superiority of a so-called "largest-distance" rule and "nested pricing" rule to other major rules commonly used in practice, such as Dantzig's original rule, the steepest-edge rule and Devex rule. Our computational experiments show that the simplex algorithm using a combination of these rules turned out to be even more efficient.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jcm.3105-m2897
Journal of Computational Mathematics, Vol. 28 (2010), Iss. 6 : pp. 837–847
Published online: 2010-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 11
Keywords: Large-scale linear programming Simplex algorithm Pivot rule Nested Largest-distance Scaling.
-
Linear programming formulation for non-stationary, finite-horizon Markov decision process models
Bhattacharya, Arnab | Kharoufeh, Jeffrey P.Operations Research Letters, Vol. 45 (2017), Iss. 6 P.570
https://doi.org/10.1016/j.orl.2017.09.001 [Citations: 5] -
Exterior point simplex-type algorithms for linear and network optimization problems
Paparrizos, Konstantinos | Samaras, Nikolaos | Sifaleras, AngeloAnnals of Operations Research, Vol. 229 (2015), Iss. 1 P.607
https://doi.org/10.1007/s10479-014-1769-1 [Citations: 8] -
Linear Programming Computation
Reduced Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_15 [Citations: 0] -
A Microwave Reflection Method to Determine the Complex Permittivity of Time-Varying Plasma
Li, Lutong | Hu, Haoquan | Tang, Pu | Chen, Bo | He, Ziyuan2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (2018), P.1071
https://doi.org/10.1109/APUSNCURSINRSM.2018.8608620 [Citations: 2] -
Linear Programming Computation
Pivotal Interior-Point Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_24 [Citations: 0] -
Linear Programming Computation
Simplex Phase-I Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_13 [Citations: 0] -
Linear Programming Computation
Improved Reduced Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_16 [Citations: 0] -
Linear Programming Computation
Special Topics
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_25 [Citations: 0] -
Linear Programming Computation
Introduction
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_1 [Citations: 0] -
A review of “linear programming computation” by Ping-Qi Pan
Shi, Yangyang | Zhang, Lei-Hong | Zhu, WenxingEuropean Journal of Operational Research, Vol. 267 (2018), Iss. 3 P.1182
https://doi.org/10.1016/j.ejor.2017.10.051 [Citations: 1] -
Linear Programming Computation
Sensitivity Analysis and Parametric LP
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_6 [Citations: 0] -
Linear Programming Computation
Face Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_22 [Citations: 0] -
Linear Programming Computation
D-Reduced Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_17 [Citations: 0] -
Linear Programming Computation
Dual Simplex Phase-l Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_14 [Citations: 0] -
Linear Programming Computation
Pivot Rule
PAN, Ping-Qi
2023
https://doi.org/10.1007/978-981-19-0147-8_12 [Citations: 0] -
Linear Programming Computation
Dual Pivot Rule
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_12 [Citations: 0] -
Linear Programming Computation
Interior-Point Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_9 [Citations: 0] -
Linear Programming Computation
Implementation of the Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_5 [Citations: 0] -
Linear Programming Computation
Criss-Cross Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_18 [Citations: 0] -
Linear Programming Computation
Deficient-Basis Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_20 [Citations: 0] -
Linear Programming Computation
Variants of the Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_7 [Citations: 0] -
Linear Programming Computation
Dual Deficient-Basis Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_21 [Citations: 0] -
Linear Programming Computation
Pivot Rule
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_11 [Citations: 0] -
Intelligent Computing and Optimization
A New Technique for Solving a 2-Dimensional Linear Program by Considering the Coefficient of Constraints
Jamrunroj, Panthira | Boonperm, Aua-aree2021
https://doi.org/10.1007/978-3-030-68154-8_27 [Citations: 1] -
Linear Programming Computation
Decomposition Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_8 [Citations: 0] -
Linear Programming Computation
Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_3 [Citations: 1] -
Influence of plasma-induced reflected wave variations on microwave transmission characterization of supersonic plasma excited in shock tube
TIAN, Jing | MA, Ping | CHEN, Bo | HU, Haoquan | ZENG, Bin | LI, Lutong | TANG, PuPlasma Science and Technology, Vol. 24 (2022), Iss. 4 P.045505
https://doi.org/10.1088/2058-6272/ac500c [Citations: 1] -
Linear Programming Computation
Generalizing Reduced Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_19 [Citations: 0] -
Linear Programming Computation
Geometry of the Feasible Region
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_2 [Citations: 0] -
Linear Programming Computation
Dual Face Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_23 [Citations: 1] -
Linear Programming Computation
Duality Principle and Dual Simplex Method
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_4 [Citations: 0] -
Linear Programming Computation
Integer Linear Programming (ILP)
PAN, Ping-Qi
2014
https://doi.org/10.1007/978-3-642-40754-3_10 [Citations: 2]