Year: 2009
Journal of Computational Mathematics, Vol. 27 (2009), Iss. 2-3 : pp. 400–424
Abstract
In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2009-JCM-8579
Journal of Computational Mathematics, Vol. 27 (2009), Iss. 2-3 : pp. 400–424
Published online: 2009-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
Keywords: Darcy-Stokes problem Finite element Uniformly stable.