Optimal Error Estimates for Nédélec Edge Elements for Time-Harmonic Maxwell's Equations

Optimal Error Estimates for Nédélec Edge Elements for Time-Harmonic Maxwell's Equations

Year:    2009

Journal of Computational Mathematics, Vol. 27 (2009), Iss. 5 : pp. 563–572

Abstract

In this paper, we obtain optimal error estimates in both $L^2$-norm and $\boldsymbol{H}$(curl)-norm for the Nédélec edge finite element approximation of the time-harmonic Maxwell's equations on a general Lipschitz domain discretized on quasi-uniform meshes. One key to our proof is to transform the $L^2$ error estimates into the $L^2$ estimate of a discrete divergence-free function which belongs to the edge finite element spaces, and then use the approximation of the discrete divergence-free function by the continuous divergence-free function and a duality argument for the continuous divergence-free function. For Nédélec's second type elements, we present an optimal convergence estimate which improves the best results available in the literature.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.2009.27.5.011

Journal of Computational Mathematics, Vol. 27 (2009), Iss. 5 : pp. 563–572

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Edge finite element Time-harmonic Maxwell's equations.

  1. Frequency-Explicit A Posteriori Error Estimates for Finite Element Discretizations of Maxwell's Equations

    Chaumont-Frelet, Théophile | Vega, Patrick

    SIAM Journal on Numerical Analysis, Vol. 60 (2022), Iss. 4 P.1774

    https://doi.org/10.1137/21M1421805 [Citations: 6]
  2. Approximation of singular solutions and singular data for Maxwell’s equations by Lagrange elements

    Duan, Huoyuan | Cao, Jiwei | Lin, Ping | Tan, Roger C E

    IMA Journal of Numerical Analysis, Vol. 42 (2022), Iss. 1 P.771

    https://doi.org/10.1093/imanum/draa090 [Citations: 0]
  3. An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity

    Chen, Gang | Monk, Peter | Zhang, Yangwen

    Journal of Scientific Computing, Vol. 101 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02643-w [Citations: 0]
  4. Superconvergence analysis of finite element approximations to Maxwell's equations in both metamaterials and PMLs

    Li, Jichun

    Computers & Mathematics with Applications, Vol. 172 (2024), Iss. P.111

    https://doi.org/10.1016/j.camwa.2024.07.034 [Citations: 0]
  5. Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions

    Melenk, J. M. | Sauter, S. A.

    Foundations of Computational Mathematics, Vol. (2023), Iss.

    https://doi.org/10.1007/s10208-023-09626-7 [Citations: 3]
  6. A second order numerical scheme for nonlinear Maxwell’s equations using conforming finite element

    Yao, Changhui | Jia, Shanghui

    Applied Mathematics and Computation, Vol. 371 (2020), Iss. P.124940

    https://doi.org/10.1016/j.amc.2019.124940 [Citations: 1]
  7. Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell’s equations

    He, Bin | Yang, Wei | Wang, Hao

    Journal of Computational and Applied Mathematics, Vol. 376 (2020), Iss. P.112860

    https://doi.org/10.1016/j.cam.2020.112860 [Citations: 7]
  8. Computational Electromagnetism

    Maxwell’s Equations: Continuous and Discrete

    Hiptmair, Ralf

    2015

    https://doi.org/10.1007/978-3-319-19306-9_1 [Citations: 4]
  9. Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell’s Equations

    Qiao, Zhonghua | Yao, Changhui | Jia, Shanghui

    Journal of Scientific Computing, Vol. 46 (2011), Iss. 1 P.1

    https://doi.org/10.1007/s10915-010-9406-x [Citations: 35]
  10. A Unified Error Analysis of Hybridizable Discontinuous Galerkin Methods for the Static Maxwell Equations

    Du, Shukai | Sayas, Francisco-Javier

    SIAM Journal on Numerical Analysis, Vol. 58 (2020), Iss. 2 P.1367

    https://doi.org/10.1137/19M1290966 [Citations: 15]
  11. Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions

    Ern, Alexandre | Guermond, Jean-Luc

    Computers & Mathematics with Applications, Vol. 75 (2018), Iss. 3 P.918

    https://doi.org/10.1016/j.camwa.2017.10.017 [Citations: 27]
  12. Superconvergent HDG methods for Maxwell’s equations via the M-decomposition

    Chen, Gang | Monk, Peter | Zhang, Yangwen

    Journal of Computational and Applied Mathematics, Vol. 402 (2022), Iss. P.113789

    https://doi.org/10.1016/j.cam.2021.113789 [Citations: 1]
  13. Analysis of a hybridizable discontinuous Galerkin method for the Maxwell operator

    Chen, Gang | Cui, Jintao | Xu, Liwei

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 1 P.301

    https://doi.org/10.1051/m2an/2019007 [Citations: 14]
  14. Two-Grid Methods for Maxwell Eigenvalue Problems

    Zhou, J. | Hu, X. | Zhong, L. | Shu, S. | Chen, L.

    SIAM Journal on Numerical Analysis, Vol. 52 (2014), Iss. 4 P.2027

    https://doi.org/10.1137/130919921 [Citations: 54]
  15. A Hybridizable Discontinuous Galerkin Method for the Time-Harmonic Maxwell Equations with High Wave Number

    Feng, Xiaobing | Lu, Peipei | Xu, Xuejun

    Computational Methods in Applied Mathematics, Vol. 16 (2016), Iss. 3 P.429

    https://doi.org/10.1515/cmam-2016-0021 [Citations: 12]
  16. Two‐grid methods for time‐harmonic Maxwell equations

    Zhong, Liuqiang | Shu, Shi | Wang, Junxian | Xu, J.

    Numerical Linear Algebra with Applications, Vol. 20 (2013), Iss. 1 P.93

    https://doi.org/10.1002/nla.1827 [Citations: 38]
  17. A Superconvergent HDG Method for the Maxwell Equations

    Chen, Huangxin | Qiu, Weifeng | Shi, Ke | Solano, Manuel

    Journal of Scientific Computing, Vol. 70 (2017), Iss. 3 P.1010

    https://doi.org/10.1007/s10915-016-0272-z [Citations: 30]
  18. An Edge-based cascadic multigrid method for $$H(\textbf{curl})$$ problems

    Wang, Jinxuan | Pan, Kejia | Wu, Xiaoxin

    Numerical Algorithms, Vol. (2024), Iss.

    https://doi.org/10.1007/s11075-024-01917-6 [Citations: 0]
  19. An Absolutely Stable Discontinuous Galerkin Method for the Indefinite Time-Harmonic Maxwell Equations with Large Wave Number

    Feng, Xiaobing | Wu, Haijun

    SIAM Journal on Numerical Analysis, Vol. 52 (2014), Iss. 5 P.2356

    https://doi.org/10.1137/120902112 [Citations: 20]
  20. Error Analysis of a Decoupled Finite Element Method for Quad-Curl Problems

    Cao, Shuhao | Chen, Long | Huang, Xuehai

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 1

    https://doi.org/10.1007/s10915-021-01705-7 [Citations: 5]
  21. The mathematical modeling of the electric field in the media with anisotropic objects

    Epov, M.I. | Shurina, E.P. | Shtabel, N.V.

    Applied Numerical Mathematics, Vol. 93 (2015), Iss. P.164

    https://doi.org/10.1016/j.apnum.2014.06.011 [Citations: 1]
  22. A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations

    Chen, Huangxin | Qiu, Weifeng | Shi, Ke

    Computer Methods in Applied Mechanics and Engineering, Vol. 333 (2018), Iss. P.287

    https://doi.org/10.1016/j.cma.2018.01.030 [Citations: 28]
  23. Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials

    Huang, Yunqing | Li, Jichun | Yang, Wei | Sun, Shuyu

    Journal of Computational Physics, Vol. 230 (2011), Iss. 22 P.8275

    https://doi.org/10.1016/j.jcp.2011.07.025 [Citations: 37]
  24. Superconvergence analysis for time‐dependent Maxwell's equations in metamaterials

    Huang, Yunqing | Li, Jichun | Lin, Qun

    Numerical Methods for Partial Differential Equations, Vol. 28 (2012), Iss. 6 P.1794

    https://doi.org/10.1002/num.20703 [Citations: 48]
  25. Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations

    Chaumont-Frelet, Théophile | Vega, Patrick

    Calcolo, Vol. 59 (2022), Iss. 2

    https://doi.org/10.1007/s10092-022-00464-7 [Citations: 4]
  26. Continuous interior penalty finite element methods for the time-harmonic Maxwell equation with high wave number

    Lu, Peipei | Wu, Haijun | Xu, Xuejun

    Advances in Computational Mathematics, Vol. 45 (2019), Iss. 5-6 P.3265

    https://doi.org/10.1007/s10444-019-09737-2 [Citations: 3]
  27. Solvability of wave propagation with Debye polarization in nonlinear dielectric materials and its finite element methods approximation

    Huang, Qiumei | Jia, Shanghui | Xu, Fei | Xu, Zhongwen | Yao, Changhui

    Applied Numerical Mathematics, Vol. 146 (2019), Iss. P.145

    https://doi.org/10.1016/j.apnum.2019.07.002 [Citations: 6]
  28. Uncertainty Quantification for Low-Frequency, Time-Harmonic Maxwell Equations with Stochastic Conductivity Models

    Kamilis, Dimitris | Polydorides, Nick

    SIAM/ASA Journal on Uncertainty Quantification, Vol. 6 (2018), Iss. 4 P.1295

    https://doi.org/10.1137/17M1156010 [Citations: 6]
  29. Two-level additive preconditioners for edge element discretizations of time-harmonic Maxwell equations

    Zhong, Liuqiang | Liu, Chunmei | Shu, Shi

    Computers & Mathematics with Applications, Vol. 66 (2013), Iss. 4 P.432

    https://doi.org/10.1016/j.camwa.2013.05.021 [Citations: 11]
  30. An unfitted finite element method with direct extension stabilization for time-harmonic Maxwell problems on smooth domains

    Yang, Fanyi | Xie, Xiaoping

    Advances in Computational Mathematics, Vol. 50 (2024), Iss. 3

    https://doi.org/10.1007/s10444-024-10148-1 [Citations: 0]
  31. Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers

    Chaumont-Frelet, T.

    Calcolo, Vol. 56 (2019), Iss. 4

    https://doi.org/10.1007/s10092-019-0346-z [Citations: 8]