Local Multigrid in H(Curl)

Local Multigrid in H(Curl)

Year:    2009

Journal of Computational Mathematics, Vol. 27 (2009), Iss. 5 : pp. 573–603

Abstract

We consider $\boldsymbol{H}$(curl, $Ω$)-elliptic variational problems on bounded Lipschitz polyhedra and their finite element Galerkin discretization by means of lowest order edge elements. We assume that the underlying tetrahedral mesh has been created by successive local mesh refinement, either by local uniform refinement with hanging nodes or bisection refinement. In this setting we develop a convergence theory for the the so-called local multigrid correction scheme with hybrid smoothing. We establish that its convergence rate is uniform with respect to the number of refinement steps. The proof relies on corresponding results for local multigrid in a $H^1(Ω)$-context along with local discrete Helmholtz-type decompositions of the edge element space.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jcm.2009.27.5.012

Journal of Computational Mathematics, Vol. 27 (2009), Iss. 5 : pp. 573–603

Published online:    2009-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    31

Keywords:    Edge elements Local multigrid Stable multilevel splittings Subspace correction theory Regular decompositions of $\boldsymbol{H}(curl Ω)$ Helmholtz-type decompositions Local mesh refinement.

  1. Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids

    Chen, Long | Holst, Michael | Xu, Jinchao | Zhu, Yunrong

    Computing and Visualization in Science, Vol. 15 (2012), Iss. 5 P.271

    https://doi.org/10.1007/s00791-013-0213-4 [Citations: 6]
  2. An analysis of the TDNNS method using natural norms

    Pechstein, Astrid S. | Schöberl, Joachim

    Numerische Mathematik, Vol. 139 (2018), Iss. 1 P.93

    https://doi.org/10.1007/s00211-017-0933-3 [Citations: 28]
  3. Adaptive Multilevel Methods with Local Smoothing for $H^1$- and $H^{\mathrm{curl}}$-Conforming High Order Finite Element Methods

    Janssen, Bärbel | Kanschat, Guido

    SIAM Journal on Scientific Computing, Vol. 33 (2011), Iss. 4 P.2095

    https://doi.org/10.1137/090778523 [Citations: 53]
  4. Stable multilevel splittings of boundary edge element spaces

    Hiptmair, Ralf | Mao, Shipeng

    BIT Numerical Mathematics, Vol. 52 (2012), Iss. 3 P.661

    https://doi.org/10.1007/s10543-012-0369-1 [Citations: 7]
  5. Auxiliary space preconditioners for SIP-DG discretizations of H(curl)-elliptic problems with discontinuous coefficients

    Ayuso de Dios, Blanca | Hiptmair, Ralf | Pagliantini, Cecilia

    IMA Journal of Numerical Analysis, Vol. (2016), Iss. P.drw018

    https://doi.org/10.1093/imanum/drw018 [Citations: 1]
  6. Poincaré meets Korn via Maxwell: Extending Korn's first inequality to incompatible tensor fields

    Neff, Patrizio | Pauly, Dirk | Witsch, Karl-Josef

    Journal of Differential Equations, Vol. 258 (2015), Iss. 4 P.1267

    https://doi.org/10.1016/j.jde.2014.10.019 [Citations: 55]
  7. Optimal multilevel methods for graded bisection grids

    Chen, Long | Nochetto, Ricardo H. | Xu, Jinchao

    Numerische Mathematik, Vol. 120 (2012), Iss. 1 P.1

    https://doi.org/10.1007/s00211-011-0401-4 [Citations: 33]
  8. Convergence of adaptive edge finite element methods for H(curl)‐elliptic problems

    Zhong, Liuqiang | Shu, Shi | Chen, Long | Xu, Jinchao

    Numerical Linear Algebra with Applications, Vol. 17 (2010), Iss. 2-3 P.415

    https://doi.org/10.1002/nla.694 [Citations: 10]
  9. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    A Review of Regular Decompositions of Vector Fields: Continuous, Discrete, and Structure-Preserving

    Hiptmair, Ralf | Pechstein, Clemens

    2020

    https://doi.org/10.1007/978-3-030-39647-3_3 [Citations: 3]
  10. An Adaptive FEM for a Maxwell Interface Problem

    Duan, Huoyuan | Qiu, Fengjuan | Tan, Roger C. E. | Zheng, Weiying

    Journal of Scientific Computing, Vol. 67 (2016), Iss. 2 P.669

    https://doi.org/10.1007/s10915-015-0098-0 [Citations: 13]
  11. Adaptive BEM with inexact PCG solver yields almost optimal computational costs

    Führer, Thomas | Haberl, Alexander | Praetorius, Dirk | Schimanko, Stefan

    Numerische Mathematik, Vol. 141 (2019), Iss. 4 P.967

    https://doi.org/10.1007/s00211-018-1011-1 [Citations: 10]
  12. The Calculation of the Effective Tensor Coefficient of the Medium for the Objects with Microinclusions

    Shurina, Ella P. | Epov, Mikhail I. | Shtabel, Nadejda V. | Mikhaylova, Ekaterina I.

    Engineering, Vol. 06 (2014), Iss. 03 P.101

    https://doi.org/10.4236/eng.2014.63014 [Citations: 8]
  13. Convergence of the Hiptmair--Xu Preconditioner for Maxwell's Equations with Jump Coefficients (i): Extensions of the Regular Decomposition

    Hu, Qiya

    SIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 5 P.2500

    https://doi.org/10.1137/20M1320365 [Citations: 2]
  14. Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation

    Chen, Huangxin | Hoppe, Ronald H.W. | Xu, Xuejun

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 47 (2013), Iss. 1 P.125

    https://doi.org/10.1051/m2an/2012023 [Citations: 4]
  15. Multiscale, Nonlinear and Adaptive Approximation

    Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids

    Xu, Jinchao | Chen, Long | Nochetto, Ricardo H.

    2009

    https://doi.org/10.1007/978-3-642-03413-8_14 [Citations: 27]