A Simplicial Algorithm for Computing an Integer Zero Point of a Mapping with the Direction Preserving Property

A Simplicial Algorithm for Computing an Integer Zero Point of a Mapping with the Direction Preserving Property

Year:    2006

Journal of Computational Mathematics, Vol. 24 (2006), Iss. 6 : pp. 711–718

Abstract

A mapping $f:Z^n\rightarrow R^n$ is said to possess the direction preserving property if $f_i(x)\gt 0$ implies $f_i(y)\geq 0$ for any integer points $x$ and $y$ with $\|x-y\|_{\infty}\leq 1$. In this paper, a simplicial algorithm is developed for computing an integer zero point of a mapping with the direction preserving property. We assume that there is an integer point $x^0$ with $c\leq x^0\leq d$ satisfying that $\max_{1\leq i\leq n}(x_i-x^0_i)f_i(x)\ge0$ for any integer point $x$ with $f(x)\neq 0$ on the boundary of $H=\{x\in R^n\;|\;c-e\leq x\leq d+e\}$, where $c$ and $d$ are two finite integer points with $c\leq d$ and $e=(1,1,\cdots,1)^{\top}\in R^n$. This assumption is implied by one of two conditions for the existence of an integer zero point of a mapping with the preserving property in van der Laan et al. (2004). Under this assumption, starting at $x^0$, the algorithm follows a finite simplicial path and terminates at an integer zero point of the mapping. This result has applications in general economic equilibrium models with indivisible commodities.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2006-JCM-8785

Journal of Computational Mathematics, Vol. 24 (2006), Iss. 6 : pp. 711–718

Published online:    2006-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    Integer Zero Point Direction Preserving Simplicial Algorithm Triangulation Existence.