Non $C^0$ Nonconforming Elements for Elliptic Fourth Order Singular Perturbation Problem

Non $C^0$ Nonconforming Elements for Elliptic Fourth Order Singular Perturbation Problem

Year:    2005

Journal of Computational Mathematics, Vol. 23 (2005), Iss. 2 : pp. 185–198

Abstract

In this paper we give a convergence theorem for non $C^0$ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kinds of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given.  

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2005-JCM-8806

Journal of Computational Mathematics, Vol. 23 (2005), Iss. 2 : pp. 185–198

Published online:    2005-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords:    Singular perturbation problem Nonconforming element Double set parameter method.