Fourier-Chebyshev Coefficients and Gauss-Turán Quadrature with Chebyshev Weight

Fourier-Chebyshev Coefficients and Gauss-Turán Quadrature with Chebyshev Weight

Year:    2003

Journal of Computational Mathematics, Vol. 21 (2003), Iss. 2 : pp. 189–194

Abstract

 The main purpose of this paper is to derive an explicit expression for Fourier-Chebyshev coefficient $A_{kn}(f)=\frac{\displaystyle 2}{\displaystyle\pi}\int_{-1}^1f(x)T_{kn}(x)\frac{\displaystyle dx}{\displaystyle \sqrt{1-x^2}},k,n\in N_0$, which is initiated by L. Gori and C. A. Micchelli.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2003-JCM-10272

Journal of Computational Mathematics, Vol. 21 (2003), Iss. 2 : pp. 189–194

Published online:    2003-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    Fourier-Chebyshev coefficient Gauss-Turán quadrature.