Journals
Resources
About Us
Open Access
Go to previous page

A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H<sup>(1)</sup> + H<sup>(2)</sup> + H<sup>(3)</sup>

A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H<sup>(1)</sup> + H<sup>(2)</sup> + H<sup>(3)</sup>

Year:    2002

Author:    Yi-Fa Tang

Journal of Computational Mathematics, Vol. 20 (2002), Iss. 1 : pp. 89–96

Abstract

In this note, we will give a proof for the uniqueness of 4th-order time-reversible symplectic difference schemes of 13th-fold compositions of phase flows ϕH(1)t,ϕH(2)t,ϕH(3)t with different temporal parameters for splitable hamiltonian H=H(1)+H(2)+H(3).  

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2002-JCM-8901

Journal of Computational Mathematics, Vol. 20 (2002), Iss. 1 : pp. 89–96

Published online:    2002-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    Time-Reversible symplectic scheme Splitable hamiltonian.

Author Details

Yi-Fa Tang Email