A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H<sup>(1)</sup> + H<sup>(2)</sup> + H<sup>(3)</sup>

A Note on the Construction of Symplectic Schemes for Splitable Hamiltonian H = H<sup>(1)</sup> + H<sup>(2)</sup> + H<sup>(3)</sup>

Year:    2002

Author:    Yi-Fa Tang

Journal of Computational Mathematics, Vol. 20 (2002), Iss. 1 : pp. 89–96

Abstract

In this note, we will give a proof for the uniqueness of 4th-order time-reversible symplectic difference schemes of 13th-fold compositions of phase flows $\phi ^t_{H(1)}, \phi ^t_{H(2)}, \phi ^t_{H(3)}$ with different temporal parameters for splitable hamiltonian $H=H^{(1)}+H^{(2)}+H^{(3)}$.  

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2002-JCM-8901

Journal of Computational Mathematics, Vol. 20 (2002), Iss. 1 : pp. 89–96

Published online:    2002-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    Time-Reversible symplectic scheme Splitable hamiltonian.

Author Details

Yi-Fa Tang