Year: 2002
Journal of Computational Mathematics, Vol. 20 (2002), Iss. 4 : pp. 337–348
Abstract
An elliptic curve is a pair $(E,O),$ where $E$ is a smooth projective curve of genus 1 and $O$ is a point of $E$, called the point at infinity. Every elliptic curve can be given by a Weierstrass equation $$E:y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6.$$ Let $\mathbb{Q}$ be the set of rationals. $E$ is said to be defined over $\mathbb{Q}$ if the coefficients $a_i, i=1,2,3,4,6$ are rationals and $O$ is defined over $\mathbb{Q}$.
Let $E/ \mathbb{Q}$ be an elliptic curve and let $E(\mathbb{Q})_{tors}$ be the torsion group of points of $E$ defined over $\mathbb{Q}$. The theorem of Mazur asserts that $E (\mathbb{Q})_{tors}$ is one of the following 15 groups $$E(\mathbb{Q})_{tors}=\begin{cases} \mathbb{Z}/m\mathbb{Z}, & m=1,2,\ldots,10,12 \\ \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/ 2m \mathbb{Z}, & m=1,2,3,4.\end{cases}.$$ We say that an elliptic curve $E'/\mathbb{Q}$ is isogenous to the elliptic curve $E$ if there is an isogeny, i.e. a morphism $\phi:E\rightarrow E'$ such that $\phi(O)=O$ , where $O$ is the point at infinity.
We give an explicit model of all elliptic curves for which $E(\mathbb{Q})_{tors}$ is in the form $\mathbb{Z}/m\mathbb{Z}$ where $m$ = 9,10,12 or $\mathbb{Z}/ 2 \mathbb{Z}\times \mathbb{Z}/ 2m \mathbb{Z} \ {\rm where} \ m=4$, according to Mazur's theorem. Morever, for every family of such elliptic curves, we give an explicit model of all their isogenous curves with cyclic kernels consisting of rationals points.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2002-JCM-8922
Journal of Computational Mathematics, Vol. 20 (2002), Iss. 4 : pp. 337–348
Published online: 2002-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 12
Keywords: Courbe elliptique Isogenie.