Isogenous of the Elliptic Curves over the Rationals

Isogenous of the Elliptic Curves over the Rationals

Year:    2002

Journal of Computational Mathematics, Vol. 20 (2002), Iss. 4 : pp. 337–348

Abstract

An elliptic curve is a pair $(E,O),$ where $E$ is a smooth projective curve of genus 1 and $O$ is a point of $E$, called the point at infinity. Every elliptic curve can be given by a Weierstrass equation $$E:y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6.$$ Let $\mathbb{Q}$ be the set of rationals. $E$ is said to be defined over $\mathbb{Q}$ if the coefficients $a_i, i=1,2,3,4,6$ are rationals and $O$ is defined over $\mathbb{Q}$.

Let $E/ \mathbb{Q}$ be an elliptic curve and let $E(\mathbb{Q})_{tors}$ be the torsion group of points of $E$ defined over $\mathbb{Q}$. The theorem of Mazur asserts that $E (\mathbb{Q})_{tors}$ is one of the following 15 groups $$E(\mathbb{Q})_{tors}=\begin{cases} \mathbb{Z}/m\mathbb{Z}, & m=1,2,\ldots,10,12 \\ \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/ 2m \mathbb{Z}, & m=1,2,3,4.\end{cases}.$$ We say that an elliptic curve $E'/\mathbb{Q}$ is isogenous to the elliptic curve $E$ if there is an isogeny, i.e. a morphism $\phi:E\rightarrow E'$ such that $\phi(O)=O$ , where $O$ is the point at infinity.

We give an explicit model of all elliptic curves for which $E(\mathbb{Q})_{tors}$ is in the form $\mathbb{Z}/m\mathbb{Z}$ where $m$ = 9,10,12 or $\mathbb{Z}/ 2 \mathbb{Z}\times \mathbb{Z}/ 2m \mathbb{Z} \ {\rm where} \ m=4$, according to Mazur's theorem. Morever, for every family of such elliptic curves, we give an explicit model of all their isogenous curves with cyclic kernels consisting of rationals points.


You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2002-JCM-8922

Journal of Computational Mathematics, Vol. 20 (2002), Iss. 4 : pp. 337–348

Published online:    2002-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Courbe elliptique Isogenie.