Convergence and Superconvergence of Hermite Bicubic Element for Eigenvalue Problem of the Biharmonic Equation

Convergence and Superconvergence of Hermite Bicubic Element for Eigenvalue Problem of the Biharmonic Equation

Year:    2001

Author:    Dong-Sheng Wu

Journal of Computational Mathematics, Vol. 19 (2001), Iss. 2 : pp. 139–142

Abstract

In this paper,we discuss the convergence and superconvergence for eigenvalue problem of the biharmonic equation by using the Hermite bicubic element. Based on asymptotic error expansions and interpolation postprocessing, we gain the following estimation: $$0 \le \bar{\lambda}_h - \lambda \le C_\epsilon h^{8-\epsilon}$$ where $\epsilon>0$ is an arbitrary small positive number and $C_\epsilon >0$ is a constant.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2001-JCM-8965

Journal of Computational Mathematics, Vol. 19 (2001), Iss. 2 : pp. 139–142

Published online:    2001-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    4

Keywords:    Hermite bicubic element Biharmonic equation Interpolation postprocessing Eigenvalue problem.

Author Details

Dong-Sheng Wu