Year: 2001
Author: Mu-Rong Jiang, Bo-Ling Guo
Journal of Computational Mathematics, Vol. 19 (2001), Iss. 2 : pp. 195–204
Abstract
In this paper, Ginzburg-Landau equation coupled with BBM equation with periodic initial boundary value conditions are discreted by the finite difference method in spatial direction. Existence of the attractors for the spatially discreted Ginzburg-Landau-BBM equations is proved. For each mesh size, there exist attractors for the discretized system. Moreover, finite Hausdorff and fractal dimensions of the discrete attractors are obtained and the bounds are independent of the mesh sizes.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2001-JCM-8972
Journal of Computational Mathematics, Vol. 19 (2001), Iss. 2 : pp. 195–204
Published online: 2001-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 10
Keywords: Attractor Spatially discreted Ginzburg-Landau-BBM equations Hausdorff and fractal dimensions.