On the Estimations of Bounds for Determinant of Hadamard Product of H-Matices

On the Estimations of Bounds for Determinant of Hadamard Product of H-Matices

Year:    2001

Author:    Yao-Tang Li, Ji-Cheng Li

Journal of Computational Mathematics, Vol. 19 (2001), Iss. 4 : pp. 365–370

Abstract

In this paper, some estimations of bounds for determinant of Hadamard product of $H$-matrices are given. The main result is the following if $A = (a_{ij})$ and $B=(b_{ij})$ are nonsingular $H$-matrices of order $n$ and $∏^n_{i=1}a_{ii}b_{ii} > 0,$ and $A_k$ and $B_k, k=1, 2, \cdots, n,$ are the $k \times k$ leading principal submatrices of $A$ and $B$, respectively, then 

image.png

where $M(A_k)$ denotes the comparison matrix of $A_k$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2001-JCM-8989

Journal of Computational Mathematics, Vol. 19 (2001), Iss. 4 : pp. 365–370

Published online:    2001-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    $H$-matrix Determinant Hadamard product.

Author Details

Yao-Tang Li

Ji-Cheng Li