Year: 2000
Author: Pin-Wen Zhang, Yu Zhang
Journal of Computational Mathematics, Vol. 18 (2000), Iss. 1 : pp. 25–42
Abstract
In this paper, we show how to use wavelet to discretize the boundary integral equations which are both singular and ill-conditioned. By using an explicit diagonal preconditioning, the condition number of the corresponding matrix is bounded by a constant, while the sparse structure speeds up the iterative solving process. Using an iterative method, one thus obtains a fast numerical algorithm to solve the boundary integral equations.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/2000-JCM-9020
Journal of Computational Mathematics, Vol. 18 (2000), Iss. 1 : pp. 25–42
Published online: 2000-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 18
Keywords: Wavelet bases Boundary integral equation Preconditioning.