Blockwise Perturbation Theory for 2x2 Block Markov Chains

Blockwise Perturbation Theory for 2x2 Block Markov Chains

Year:    2000

Author:    Jun-Gong Xue, Wei-Guo Gao

Journal of Computational Mathematics, Vol. 18 (2000), Iss. 3 : pp. 305–312

Abstract

Let P be a transition matrix of a Markov chain and be of the form $$P=\Bigg( \begin{matrix} P_{11} &P_{12} \\ P_{21} &P_{22}  \end{matrix} \Bigg).$$ The stationary distribution $π^T$ is partitioned conformally in the form $(π^T_1, π^T_2)$. This paper establish the relative error bound in $π^T_i (i=1,2)$ when each block $P_{ij}$ get a small relative perturbation.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2000-JCM-9044

Journal of Computational Mathematics, Vol. 18 (2000), Iss. 3 : pp. 305–312

Published online:    2000-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    8

Keywords:    Blockwise perturbation Markov chains stationary distribution error bound.

Author Details

Jun-Gong Xue

Wei-Guo Gao