On the Convergence of King-Werner Iteration Method in Banach Space

On the Convergence of King-Werner Iteration Method in Banach Space

Year:    2000

Author:    Zheng-Da Huang

Journal of Computational Mathematics, Vol. 18 (2000), Iss. 5 : pp. 457–466

Abstract

In this paper, a Kantorovitch-Ostrowski type convergence theorem and an error estimate of $\frac{\|f'(z_0)^{-1}f(x_{n+1})\|}{\|f'(z_0)^{-1}f(x_n)\|}$ using the information of higher derivatives at the center between initial points for King-Werner iteration method in Banach space are established.  

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2000-JCM-9058

Journal of Computational Mathematics, Vol. 18 (2000), Iss. 5 : pp. 457–466

Published online:    2000-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Information at the center between initial points King-Werner iteration method Convergence Error estimate.

Author Details

Zheng-Da Huang