Superconvergence Analysis for Cubic Triangular Element of the Finite Element

Superconvergence Analysis for Cubic Triangular Element of the Finite Element

Year:    2000

Author:    Qi-Ding Zhu

Journal of Computational Mathematics, Vol. 18 (2000), Iss. 5 : pp. 541–550

Abstract

In this paper, we construct a projection interpolation for cubic triangular element by using orthogonal expansion triangular method. We show two fundamental formulas of estimation on a special partion and obtain a superconvergence result of 1-ε order higher for the placement function and its tangential derivative on the third order Lobatto points and Gauss points on each edge of triangular element.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2000-JCM-9064

Journal of Computational Mathematics, Vol. 18 (2000), Iss. 5 : pp. 541–550

Published online:    2000-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Finite element Superconvergence Projection interpolation.

Author Details

Qi-Ding Zhu