Nonlinear Galerkin Method and Crank-Nicolson Method for Viscous Incompressible Flow

Nonlinear Galerkin Method and Crank-Nicolson Method for Viscous Incompressible Flow

Year:    1999

Author:    Yin-Nian He, Dong-Sheng Li, Kai-Tai Li

Journal of Computational Mathematics, Vol. 17 (1999), Iss. 2 : pp. 139–158

Abstract

In this article we discuss a new full discrete scheme for the numerical solution of the Navier-Stokes equations modeling viscous incompressible flow. This scheme consists of nonlinear Galerkin method using mixed finite elements and Crank-Nicolson method. Next, we provide the second-order convergence accuracy of numerical solution corresponding to this scheme. Compared with the usual Galerkin scheme, this scheme can save a large amount of computational time under the same convergence accuracy.  

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1999-JCM-9089

Journal of Computational Mathematics, Vol. 17 (1999), Iss. 2 : pp. 139–158

Published online:    1999-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:    Nonlinear Galerkin method Crank-Nicolson method Viscous incompressible flow.

Author Details

Yin-Nian He

Dong-Sheng Li

Kai-Tai Li