The Large Time Convergence of Spectral Method for Generalized Kuramoto-Sivashinsky Equation (II)

The Large Time Convergence of Spectral Method for Generalized Kuramoto-Sivashinsky Equation (II)

Year:    1998

Author:    Xinming Xiang

Journal of Computational Mathematics, Vol. 16 (1998), Iss. 3 : pp. 203–212

Abstract

In this paper, we study fully discrete spectral method and long time behavior of solution of generalized Kuramoto-Sivashinsky equation with periodic initial condition. We prove that the large time error estimation for fully discrete solution of spectral method. We prove the existence of approximate attractors $\mathcal{A}_N$, $\mathcal{A}_N^k$ respectively and $d (\mathcal{A}_N, \mathcal{A})\to 0$, $d (\mathcal{A}_N^k, \mathcal{A}) \to 0$.  

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1998-JCM-9153

Journal of Computational Mathematics, Vol. 16 (1998), Iss. 3 : pp. 203–212

Published online:    1998-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:    Kuramoto-Sivashinsky equation large time convergence Approximate attractor Upper semicontinuity of attractors.

Author Details

Xinming Xiang