Optimal-Order Parameter Identification in Solving Nonlinear Systems in a Banach Space

Optimal-Order Parameter Identification in Solving Nonlinear Systems in a Banach Space

Year:    1995

Journal of Computational Mathematics, Vol. 13 (1995), Iss. 3 : pp. 267–280

Abstract

We study the sufficient and necessary conditions of the convergence for parameter-based rational methods in a Banach space. We derive a closed form of error bounds in terms of a real parameter $\lambda$ ($1 \leq \lambda < 2$). We also discuss some behaviors when the family is applied to abstract quadratic functions on a Banach space for $ \lambda = 2 $.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1995-JCM-9269

Journal of Computational Mathematics, Vol. 13 (1995), Iss. 3 : pp. 267–280

Published online:    1995-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    14

Keywords: