The Solvability Conditions for the Inverse Problem of Matrices Positive Semidefinite on a Subspace

The Solvability Conditions for the Inverse Problem of Matrices Positive Semidefinite on a Subspace

Year:    1994

Author:    Xi-Yan Hu, Lei Zhang, Wei-Zhang Du

Journal of Computational Mathematics, Vol. 12 (1994), Iss. 1 : pp. 78–87

Abstract

This paper studies the following two problem:
Problem Ⅰ. Given $X,B∈R^{n×m}$, find $A∈P_{s,n}$, such that $AX=B$, where
$P_{s,n}$={$A∈SR^{n×n}|x^T AX≥0,∀S^Tx=0$ , for given $S∈R^{n×p}_p$}.
Problem Ⅱ. Given $A^*∈R^{n×n}$, find $\hat{A}∈S_E$, such that $||A^*-\hat{A}||$=inf$_{A∈S_E}||A^*-A||$ where $S_E$ denotes the solutions set of  Problem Ⅰ.
The necessary and sufficient conditions for the solvability of Problem Ⅰ, the expression of the general solution of Problem Ⅰ and the solution of Problem Ⅱ are given for two case. For the general case, the equivalent form of conditions for the solvability of Problem  Ⅰ is given.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1994-JCM-10229

Journal of Computational Mathematics, Vol. 12 (1994), Iss. 1 : pp. 78–87

Published online:    1994-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords:   

Author Details

Xi-Yan Hu

Lei Zhang

Wei-Zhang Du