Extensions of the Kantorovich Inequality and the Bauer-Fike Inequality

Extensions of the Kantorovich Inequality and the Bauer-Fike Inequality

Year:    1991

Author:    Ji-Guang Sun

Journal of Computational Mathematics, Vol. 9 (1991), Iss. 4 : pp. 360–368

Abstract

This paper proves a Kantorovich-type inequality on the matrix of the type $\frac{1}{2}(Q^H_1 AQ_1 Q^H_1A^{-1} Q_1+Q^H_1A^{-1}Q_1Q^H_1AQ_1)$, where $A$ is an $n\times n$ positive definite Hermitian matrix and $Q_1$ is an $n\times m$ matrix with rank $(Q_1)=m$. The result is applied to get an extension of the Bauer-Fike inequality on condition numbers of similarities that block diagonalized matrices.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1991-JCM-9411

Journal of Computational Mathematics, Vol. 9 (1991), Iss. 4 : pp. 360–368

Published online:    1991-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:   

Author Details

Ji-Guang Sun