A Fourth Order Finite Difference Approximation to the Eigenvalues Approximation to the Eigenvalues of a Clamped Plate

A Fourth Order Finite Difference Approximation to the Eigenvalues Approximation to the Eigenvalues of a Clamped Plate

Year:    1988

Author:    Lü Tao, Chin Bo Liem, Tis Min Shih

Journal of Computational Mathematics, Vol. 6 (1988), Iss. 3 : pp. 267–271

Abstract

In a 21-point finite difference scheme, assign suitable interpolation values to the fictitious node points. The numerical eigenvalues are then of $O(h^2)$ precision. But the corrected value $\hat{λ}_h=λ_h+\frac{h^2}{6}λ_h^{\frac{3}{2}}$ and extrapolation $\hatλ_h=\frac{4}{3}λ_{\frac{λ}{2}}-\frac{1}{3}λ_h$ can be proved to have $O(h^4)$ precision.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1988-JCM-9515

Journal of Computational Mathematics, Vol. 6 (1988), Iss. 3 : pp. 267–271

Published online:    1988-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    5

Keywords:   

Author Details

Lü Tao

Chin Bo Liem

Tis Min Shih