Fast Parallel Algorithms for Computing Generalized Inverses $A^+$ and $A_{MN}^+$

Fast Parallel Algorithms for Computing Generalized Inverses $A^+$ and $A_{MN}^+$

Year:    1988

Author:    Guo-Rong Wang, Sen-Quan Lu

Journal of Computational Mathematics, Vol. 6 (1988), Iss. 4 : pp. 348–354

Abstract

The parallel arithmetic complexities for computing generalized inverse $A^+$, computing the minimum-norm least-squares solution of $Ax=b$, computing order $m+n-r$ determinants and finding the characteristic polynomials of order $m+n-r$ matrices are shown to have the same grawth rate. Algorithms are given that compute $A^+$ and $A_{MN}^+$ in $O(\log r\dot \log n+\log m)$ and $O(\log^2n+\log m)$ steps using a number of processors which is a polynomial in $m, \ n$ and $r$ $(A\in B_r^{m\times n},r=rank \ A)$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1988-JCM-9523

Journal of Computational Mathematics, Vol. 6 (1988), Iss. 4 : pp. 348–354

Published online:    1988-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    7

Keywords:   

Author Details

Guo-Rong Wang

Sen-Quan Lu