Bounds on Condition Number of a Matrix

Bounds on Condition Number of a Matrix

Year:    1984

Journal of Computational Mathematics, Vol. 2 (1984), Iss. 4 : pp. 356–360

Abstract

For each vector norm ‖x‖, a matirx $A$ has its operator norm $‖A‖=\mathop{\rm min}\limits_{x≠0}\frac{‖Ax‖}{‖x‖}$ and a condition number $P(A)=‖A‖ ‖A^{-1}‖$. Let $U$ be the set of the whole of norms defined on $C^n$. It is shown that for a nonsingular matrix $A\in C^{n\times n}$, there is no finite upper bound of $P(A)$ whch ‖·‖ varies on $U$ if $A\neq \alpha I$; on the other hand, it is shown that $\mathop{\rm inf}\limits_{‖·‖\in U} ‖A‖ ‖A^{-1}‖ =ρ(A)ρ(A^{-1})$ and in which case this infimum can or cannot be attained, where $ρ(A)$ denotes the spectral radius of $A$. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1984-JCM-9671

Journal of Computational Mathematics, Vol. 2 (1984), Iss. 4 : pp. 356–360

Published online:    1984-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    5

Keywords: