Orthogonal Projections and the Perturbation of the Eigenvalues of Singular Pencils

Orthogonal Projections and the Perturbation of the Eigenvalues of Singular Pencils

Year:    1983

Journal of Computational Mathematics, Vol. 1 (1983), Iss. 1 : pp. 63–74

Abstract

In this paper we obtain a Hoffman-Wielandt type theorem and a Bauer-Fike type theorem for singular pencils of matrics. These results delineate the relations between the perturbation of the eigenvalues of a singular diagonalizable pencil $A-λB$ and the variation of the orthogonal projection onto the column space $\mathcal{R} \Bigg( \begin{matrix} A^H \\ B^H  \end{matrix} \Bigg)$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1983-JCM-9682

Journal of Computational Mathematics, Vol. 1 (1983), Iss. 1 : pp. 63–74

Published online:    1983-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords: