Loading [MathJax]/jax/output/CommonHTML/jax.js
Journals
Resources
About Us
Open Access
Go to previous page

Local Explicit Many-Knot Spline Hermite Approximation Schemes

Local Explicit Many-Knot Spline Hermite Approximation Schemes

Year:    1983

Journal of Computational Mathematics, Vol. 1 (1983), Iss. 4 : pp. 317–321

Abstract

If f(i))(α)(α=a,i=0,1,...,k2) are given, then we get a class of the Hermite approximation operator Qf=F satisfying F(i)(α)=f(i)(α), where F is the many-knot spline function whose knots are at points yi:=y0<y1<<yk1=b, and FPk on [yi1,yi]. The operator is of the form Qf:=k2i=0[f(i)(a)ϕi+f(i)(b)ψi]. We give an explicit representation of ϕi and ψi in terms of B-splines Ni,k. We show that Q reproduces appropriate classes of polynomials.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/1983-JCM-9707

Journal of Computational Mathematics, Vol. 1 (1983), Iss. 4 : pp. 317–321

Published online:    1983-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    5

Keywords: