Silver-functionalized Polyurethane Composite Nanofibers for Controlled Release and Antibacterial Application

Silver-functionalized Polyurethane Composite Nanofibers for Controlled Release and Antibacterial Application

Year:    2017

Journal of Fiber Bioengineering and Informatics, Vol. 10 (2017), Iss. 2 : pp. 105–116

Abstract

In this study, we report a facile approach to develop composite nanofibrous mat for tissue engineering application. Montmorillonite (MMT) nanoparticles were first used to load an antipyretic analgesic drug, aspirin (ASP). The ASP-loaded MMT nanohybrids were mixed with polyurethane (PU) for subsequent electrospinning to form drug-loaded PU ⁄ MMT ⁄ ASP composite nanofibrous mats. Then electrospun PU ⁄ MMT ⁄ ASP nanofibers were assembled with a bilayer of polyacrylic acid (PAA) and poly(ethylene imine) (PEI) through electrostatic interaction. Silver nanoparticles have been immobilized onto nanofibrous mats by in situ complexation and chemical reduction of AgNO_3 solution to form PU ⁄ MMT ⁄ ASP ⁄ Ag nanofibrous mats. The PU ⁄ MMT ⁄ ASP ⁄ Ag composite nanofibrous mats were systematically characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and mechanical testing. In vitro drug release showed that this composite nanofibrous drug delivery system can effectively mitigate the burst release of the drug and the introduction of MMT can improve the tensile stress property. Further the antibacterial properties and cytotoxicity evaluation of these mats demonstrate that the PU ⁄ MMT ⁄ ASP ⁄ Ag has a reasonable activity toward the growth inhibition of model bacterium Staphylococcus aureus, and the PU ⁄ MMT ⁄ ASP ⁄ Ag nanofibers display good cytocompatibility. In view of its sustained release profile and excellent biocompatibility, this double-loaded drug delivery system may have great prospect in tissue engineering.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.3993/jfbim00266

Journal of Fiber Bioengineering and Informatics, Vol. 10 (2017), Iss. 2 : pp. 105–116

Published online:    2017-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:    Electrospinning

  1. Multi-functional Calotropis gigantea fabric using self-assembly silk fibroin, chitosan and nano-silver microspheres with oxygen low-temperature plasma treatment

    Zhao, Zeyu

    Yan, Jia

    Wang, Tao

    Ma, Yanxue

    Xie, Maobin

    Mu, Xuan

    Wang, Xiaoqin

    Zheng, Zhaozhu

    Li, Yuling

    Li, Gang

    Colloids and Surfaces B: Biointerfaces, Vol. 215 (2022), Iss. P.112488

    https://doi.org/10.1016/j.colsurfb.2022.112488 [Citations: 17]