Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access

An Explicit Finite Difference Scheme for Solving the Space Fractional Nonlinear Schrödinger Equation

Year:    2021

Author:    Dongsheng Tang

Journal of Information and Computing Science, Vol. 16 (2021), Iss. 2 : pp. 122–125

Abstract

This paper uses the finite difference method to numerically solve the space fractional nonlinear Schrodinger equation. First, we give some properties of the fractional Laplacian $Δ_h^\alpha.$ Then we construct a numerical scheme which satisfies the mass conservation law without proof and the scheme’s order is $o(\tau^2+h^2)$ in the discrete $L^\infty$ norm. Moreover, The scheme conserves the mass conservation and is unconditionally stable about the initial values. Finally, this article gives a numerical example to verify the relevant properties of the scheme.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2024-JICS-22370

Journal of Information and Computing Science, Vol. 16 (2021), Iss. 2 : pp. 122–125

Published online:    2021-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    4

Keywords:    Partial Differential Equations Finite difference method Numerical solutions.

Author Details

Dongsheng Tang