Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access
Go to previous page

Error Analysis for Sparse Time-Frequency Decomposition of Non- Integer Period Sampling Signals

Year:    2019

Journal of Information and Computing Science, Vol. 14 (2019), Iss. 1 : pp. 25–34

Abstract

In this paper, we review a nonlinear matching pursuit approach (Hou and Shi, 2013), a data- driven time-frequency analysis method, which is looking for the sparsest representation of multiscale data over a dictionary consisting of all intrinsic mode functions (IMFs). In many practical problems, signals are non-integer period sampled. In other words, the time window may not contain exactly an integer number of signal periods. We consider the sparse time-frequency decomposition of non-integer period sampling signals by the nonlinear matching pursuit method and estimate the error. The estimation show that the relative error depends on the separation factor, the frequency ratio, and the number of periods of the IMF.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/2024-JICS-22429

Journal of Information and Computing Science, Vol. 14 (2019), Iss. 1 : pp. 25–34

Published online:    2019-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    10

Keywords: