$\mathfrak{X}$-Gorenstein Projective Dimensions

$\mathfrak{X}$-Gorenstein Projective Dimensions

Year:    2022

Author:    Jie Wang, Xiaowei Xu, Zhibing Zhao

Journal of Mathematical Study, Vol. 55 (2022), Iss. 4 : pp. 398–414

Abstract

In this paper, we mainly investigate the $\mathfrak{X}$-Gorenstein projective dimension of modules and the (left) $\mathfrak{X}$-Gorenstein global dimension of rings. Some properties of $\mathfrak{X}$-Gorenstein projective dimensions are obtained. Furthermore, we prove that the (left) $\mathfrak{X}$-Gorenstein global dimension of a ring $R$ is equal to the supremum of the set of $\mathfrak{X}$-Gorenstein projective dimensions of all cyclic (left) $R$-modules. This result extends the well-known Auslander's theorem on the global dimension and its Gorenstein homological version.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v55n4.22.04

Journal of Mathematical Study, Vol. 55 (2022), Iss. 4 : pp. 398–414

Published online:    2022-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:    Gorenstein projective modules $\mathfrak{X}$-Gorenstein projective modules $\mathfrak{X}$-Gorenstein projective dimensions the Auslander’s theorem.

Author Details

Jie Wang

Xiaowei Xu

Zhibing Zhao