Existence Results for Super-Liouville Equations on the Sphere via Bifurcation Theory

Existence Results for Super-Liouville Equations on the Sphere via Bifurcation Theory

Year:    2021

Author:    Aleks Jevnikar, Andrea Malchiodi, Ruijun Wu

Journal of Mathematical Study, Vol. 54 (2021), Iss. 1 : pp. 89–122

Abstract

We are concerned with super-Liouville equations on $\mathbb{S}^2$, which have variational structure with a strongly-indefinite functional. We prove the existence of nontrivial solutions by combining the use of Nehari manifolds, balancing conditions and bifurcation theory.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v54n1.21.05

Journal of Mathematical Study, Vol. 54 (2021), Iss. 1 : pp. 89–122

Published online:    2021-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    34

Keywords:    Super-Liouville equations existence results bifurcation theory critical groups.

Author Details

Aleks Jevnikar

Andrea Malchiodi

Ruijun Wu

  1. Min-max solutions for super sinh-Gordon equations on compact surfaces

    Jevnikar, Aleks | Malchiodi, Andrea | Wu, Ruijun

    Journal of Differential Equations, Vol. 289 (2021), Iss. P.128

    https://doi.org/10.1016/j.jde.2021.04.022 [Citations: 2]
  2. Conformal Dirac–Einstein equations on manifolds with boundary.

    Borrelli, William | Maalaoui, Ali | Martino, Vittorio

    Calculus of Variations and Partial Differential Equations, Vol. 62 (2023), Iss. 1

    https://doi.org/10.1007/s00526-022-02354-w [Citations: 0]
  3. Existence results for a super Toda system

    Jevnikar, Aleks | Wu, Ruijun

    Annals of Global Analysis and Geometry, Vol. 64 (2023), Iss. 1

    https://doi.org/10.1007/s10455-023-09899-9 [Citations: 0]