Anisotropic Elliptic Nonlinear Obstacle Problem with Weighted Variable Exponent

Anisotropic Elliptic Nonlinear Obstacle Problem with Weighted Variable Exponent

Year:    2021

Author:    Adil Abbassi, Chakir Allalou, Abderrazak Kassidi

Journal of Mathematical Study, Vol. 54 (2021), Iss. 4 : pp. 337–356

Abstract

In this paper, we are concerned with a show the existence of a entropy solution to the obstacle problem associated with the equation of the type :


$\begin{cases} Au+g(x,u,∇u) = f  & {\rm in}  & Ω \\ u=0 & {\rm on} & ∂Ω \end{cases}$

where $\Omega$ is a bounded open subset of $\;\mathbb{R}^{N}$, $N\geq 2$, $A\,$ is an operator of Leray-Lions type acting from $\; W_{0}^{1,\overrightarrow{p}(.)} (\Omega,\ \overrightarrow{w}(.))\;$ into its dual $\;  W_{0}^{-1,\overrightarrow{p}'(.)} (\Omega,\ \overrightarrow{w}^*(.))$ and $\,L^1\,-\,$deta. The nonlinear term $\;g\,$: $\Omega\times \mathbb{R}\times \mathbb{R}^{N}\longrightarrow \mathbb{R} $ satisfying only some growth condition.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v54n4.21.01

Journal of Mathematical Study, Vol. 54 (2021), Iss. 4 : pp. 337–356

Published online:    2021-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:    Entropy solutions Anisotropic elliptic equations weighted anisotropic variable exponent Sobolev space.

Author Details

Adil Abbassi

Chakir Allalou

Abderrazak Kassidi

  1. Anisotropic obstacle Neumann problems in weighted Sobolev spaces with Hardy potential and variable exponent

    Zineddaine, Ghizlane | Sabiry, Abdelaziz | Melliani, Said | Kassidi, Abderrazak

    SeMA Journal, Vol. (2024), Iss.

    https://doi.org/10.1007/s40324-024-00347-7 [Citations: 0]
  2. Anisotropic obstacle Neumann problems in weighted Sobolev spaces and variable exponent

    Zineddaine, Ghizlane | Sabiry, Abdelaziz | Melliani, Said | Kassidi, Abderrazak

    Journal of Applied Analysis, Vol. (2024), Iss.

    https://doi.org/10.1515/jaa-2024-0023 [Citations: 0]
  3. Nonlinear elliptic problems involving the generalized p(u)-Laplacian operator with Fourier boundary condition

    Allalou, Chakir | Ait Temghart, Said | Hilal, Khalid

    Boletim da Sociedade Paranaense de Matemática, Vol. 41 (2022), Iss. P.1

    https://doi.org/10.5269/bspm.62948 [Citations: 2]
  4. EXISTENCE RESULTS IN WEIGHTED SOBOLEV SPACE FOR QUASILINEAR DEGENERATE P(Z)−ELLIPTIC PROBLEMS WITH A HARDY POTENTIAL

    Zineddaine, Ghizlane | Sabiry, Abdelaziz | Melliani, Said | Kassidi, Abderrazak

    Mathematical Modelling and Analysis, Vol. 29 (2024), Iss. 3 P.460

    https://doi.org/10.3846/mma.2024.18696 [Citations: 0]