Year: 2021
Author: Adil Abbassi, Chakir Allalou, Abderrazak Kassidi
Journal of Mathematical Study, Vol. 54 (2021), Iss. 4 : pp. 337–356
Abstract
In this paper, we are concerned with a show the existence of a entropy solution to the obstacle problem associated with the equation of the type :
$\begin{cases} Au+g(x,u,∇u) = f & {\rm in} & Ω \\ u=0 & {\rm on} & ∂Ω \end{cases}$
where $\Omega$ is a bounded open subset of $\;\mathbb{R}^{N}$, $N\geq 2$, $A\,$ is an operator of Leray-Lions type acting from $\; W_{0}^{1,\overrightarrow{p}(.)} (\Omega,\ \overrightarrow{w}(.))\;$ into its dual $\; W_{0}^{-1,\overrightarrow{p}'(.)} (\Omega,\ \overrightarrow{w}^*(.))$ and $\,L^1\,-\,$deta. The nonlinear term $\;g\,$: $\Omega\times \mathbb{R}\times \mathbb{R}^{N}\longrightarrow \mathbb{R} $ satisfying only some growth condition.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jms.v54n4.21.01
Journal of Mathematical Study, Vol. 54 (2021), Iss. 4 : pp. 337–356
Published online: 2021-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 20
Keywords: Entropy solutions Anisotropic elliptic equations weighted anisotropic variable exponent Sobolev space.
Author Details
-
Anisotropic obstacle Neumann problems in weighted Sobolev spaces with Hardy potential and variable exponent
Zineddaine, Ghizlane | Sabiry, Abdelaziz | Melliani, Said | Kassidi, AbderrazakSeMA Journal, Vol. (2024), Iss.
https://doi.org/10.1007/s40324-024-00347-7 [Citations: 0] -
Anisotropic obstacle Neumann problems in weighted Sobolev spaces and variable exponent
Zineddaine, Ghizlane | Sabiry, Abdelaziz | Melliani, Said | Kassidi, AbderrazakJournal of Applied Analysis, Vol. (2024), Iss.
https://doi.org/10.1515/jaa-2024-0023 [Citations: 0] -
Nonlinear elliptic problems involving the generalized p(u)-Laplacian operator with Fourier boundary condition
Allalou, Chakir | Ait Temghart, Said | Hilal, KhalidBoletim da Sociedade Paranaense de Matemática, Vol. 41 (2022), Iss. P.1
https://doi.org/10.5269/bspm.62948 [Citations: 2] -
EXISTENCE RESULTS IN WEIGHTED SOBOLEV SPACE FOR QUASILINEAR DEGENERATE P(Z)−ELLIPTIC PROBLEMS WITH A HARDY POTENTIAL
Zineddaine, Ghizlane | Sabiry, Abdelaziz | Melliani, Said | Kassidi, AbderrazakMathematical Modelling and Analysis, Vol. 29 (2024), Iss. 3 P.460
https://doi.org/10.3846/mma.2024.18696 [Citations: 0]