Year: 2021
Author: Zhichao Chen, Jiayi Cai, Lingchao Meng, Libin Li
Journal of Mathematical Study, Vol. 54 (2021), Iss. 4 : pp. 357–370
Abstract
The $\mathbb{Z}_{+}$-ring is an important invariant in the theory of tensor category. In this paper, by using matrix method, we describe all irreducible $\mathbb{Z}_{+}$-modules over a $\mathbb{Z}_{+}$-ring $\mathcal{A}$, where $\mathcal{A}$ is a commutative ring with a $\mathbb{Z}_{+}$-basis{$1$, $x$, $y$, $xy$} and relations: $$ x^{2}=1,\;\;\;\;\; y^{2}=1+x+xy.$$We prove that when the rank of $\mathbb{Z}_{+}$-module $n\geq5$, there does not exist irreducible $\mathbb{Z}_{+}$-modules and when the rank $n\leq4$, there exists finite inequivalent irreducible $\mathbb{Z}_{+}$-modules, the number of which is respectively 1, 3, 3, 2 when the rank runs from 1 to 4.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jms.v54n4.21.02
Journal of Mathematical Study, Vol. 54 (2021), Iss. 4 : pp. 357–370
Published online: 2021-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 14
Keywords: Non-negative integer matrix representation irreducible $\mathbb{Z}_{+}$-module $\mathbb{Z}_{+}$-ring.
Author Details
-
Irreducible Z+-modules over a class of domains
Chen, Yong | Li, Libin | Zheng, YingCommunications in Algebra, Vol. (2024), Iss. P.1
https://doi.org/10.1080/00927872.2024.2372369 [Citations: 0] -
Classification of Irreducible Z+-Modules of a Z+-Ring Using Matrix Equations
Chen, Zhichao | Zhao, RujuSymmetry, Vol. 14 (2022), Iss. 12 P.2598
https://doi.org/10.3390/sym14122598 [Citations: 1]