Nontrivial Solution for a Kirchhoff Type Problem with Zero Mass

Nontrivial Solution for a Kirchhoff Type Problem with Zero Mass

Year:    2021

Author:    Yanghuan Hu, Haidong Liu, Mingjie Wang, Mengjia Xu

Journal of Mathematical Study, Vol. 54 (2021), Iss. 4 : pp. 387–395

Abstract

Consider the Kirchhoff type equation \begin{equation}\label{eq0.1}-\left(a+b\int_{\mathbb{R}^{N}}|\nabla u|^{2}\,dx\right) \Delta u=\left(\frac{1}{|x|^\mu}*F(u)\right)f(u)\ \ \mbox{in}\ \mathbb{R}^N, \ \  u\in D^{1,2}(\mathbb{R}^N), ~~~~~~(0.1)\end{equation}

where $a>0$, $b\geq0$, $0<\mu<\min\{N, 4\}$ with $N\geq 3$, $f: \mathbb{R}\to\mathbb{R}$ is a continuous function and $F(u)=\int_0^u f(t)\,dt$. Under some general assumptions on $f$, we establish the existence of a nontrivial spherically symmetric solution for problem (0.1). The proof is mainly based on mountain pass approach and a scaling technique introduced by Jeanjean.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v54n4.21.04

Journal of Mathematical Study, Vol. 54 (2021), Iss. 4 : pp. 387–395

Published online:    2021-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    9

Keywords:    Kirchhoff type equation zero mass mountain pass approach.

Author Details

Yanghuan Hu

Haidong Liu

Mingjie Wang

Mengjia Xu