Boundedness Characterization of Maximal Commutators on Orlicz Spaces in the Dunkl Setting

Boundedness Characterization of Maximal Commutators on Orlicz Spaces in the Dunkl Setting

Year:    2020

Author:    Vagif S. Guliyev, Yagub Y. Mammadov, Fatma A. Muslumova

Journal of Mathematical Study, Vol. 53 (2020), Iss. 1 : pp. 45–65

Abstract

On the real line, the Dunkl operators

$$D_{\nu}(f)(x):=\frac{d f(x)}{dx}  + (2\nu+1) \frac{f(x) - f(-x)}{2x}, ~~ \quad\forall \, x \in \mathbb{R}, ~ \forall \, \nu \ge -\tfrac{1}{2}$$

are differential-difference operators associated with the reflection group $\mathbb{Z}_2$ on $\mathbb{R}$, and on the $\mathbb{R}^d$ the Dunkl operators $\big\{D_{k,j}\big\}_{j=1}^{d}$ are the differential-difference operators associated with the reflection group $\mathbb{Z}_2^d$ on $\mathbb{R}^{d}$.

In this paper, in the setting $\mathbb{R}$ we show that $b \in BMO(\mathbb{R},dm_{\nu})$ if and only if the maximal commutator $M_{b,\nu}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R},dm_{\nu})$. Also in the setting $\mathbb{R}^{d}$ we show that $b \in BMO(\mathbb{R}^{d},h_{k}^{2}(x) dx)$ if and only if the maximal commutator $M_{b,k}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R}^{d},h_{k}^{2}(x) dx)$.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v53n1.20.03

Journal of Mathematical Study, Vol. 53 (2020), Iss. 1 : pp. 45–65

Published online:    2020-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Maximal operator Orlicz space Dunkl operator commutator BMO.

Author Details

Vagif S. Guliyev

Yagub Y. Mammadov

Fatma A. Muslumova