On the Generalized Porous Medium Equation in Fourier-Besov Spaces

On the Generalized Porous Medium Equation in Fourier-Besov Spaces

Year:    2020

Author:    Weiliang Xiao, Xuhuan Zhou

Journal of Mathematical Study, Vol. 53 (2020), Iss. 3 : pp. 316–328

Abstract

We study a kind of generalized porous medium equation with fractional Laplacian and abstract pressure term. For a large class of equations corresponding to the form: $u_t+\nu \Lambda^{\beta}u=\nabla\cdot(u\nabla Pu)$, we get their local well-posedness in Fourier-Besov spaces for large initial data. If the initial data is small, then the solution becomes global. Furthermore, we prove a blowup criterion for the solutions.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v53n3.20.05

Journal of Mathematical Study, Vol. 53 (2020), Iss. 3 : pp. 316–328

Published online:    2020-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    13

Keywords:    Porous medium equation well-posedness blowup criterion Fourier-Besov spaces.

Author Details

Weiliang Xiao

Xuhuan Zhou

  1. Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in Fourier-Besov-Morrey Spaces with Variable Exponent

    Abidin, Muhammad Zainul | Chen, Jiecheng

    Mathematics, Vol. 9 (2021), Iss. 5 P.498

    https://doi.org/10.3390/math9050498 [Citations: 6]
  2. Local and global well-posedness for fractional porous medium equation in critical Fourier-Besov spaces

    El Idrissi, Ahmed | El Boukari, Brahim | El Ghordaf, Jalila

    Boletim da Sociedade Paranaense de Matemática, Vol. 42 (2024), Iss. P.1

    https://doi.org/10.5269/bspm.67664 [Citations: 0]
  3. On the global existence and analyticity of the mild solution for the fractional Porous medium equation

    Abidin, Muhammad Zainul | Marwan, Muhammad

    Boundary Value Problems, Vol. 2023 (2023), Iss. 1

    https://doi.org/10.1186/s13661-023-01794-3 [Citations: 0]