On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem

On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem

Year:    2019

Author:    Jinfa Cheng

Journal of Mathematical Study, Vol. 52 (2019), Iss. 1 : pp. 38–52

Abstract

In this paper, a generalized multivariate fractional Taylor's and Cauchy's  mean value theorem of the kind
$$f(x,y) = \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}}  + R_n^\alpha (\xi,\eta),\qquad\frac{{f(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}f({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }}{{g(x,y) - \sum\limits_{j = 0}^n {\frac{{{D^{j\alpha }}g({x_{0,}}{y_0})}}{{\Gamma (j\alpha  + 1)}}} }} = \frac{{R_n^\alpha (\xi ,\eta )}}{{T_n^\alpha (\xi ,\eta )}},$$

where $0<\alpha \le 1$, is established. Such expression is precisely the classical Taylor's and Cauchy's mean value theorem in the particular case $\alpha=1$. In addition, detailed expressions for $R_n^\alpha (\xi,\eta)$ and $T_n^\alpha (\xi,\eta)$ involving the sequential Caputo fractional derivative are also given.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v52n1.19.04

Journal of Mathematical Study, Vol. 52 (2019), Iss. 1 : pp. 38–52

Published online:    2019-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Sequential Caputo fractional derivative generalized Taylor's mean value theorem generalized Taylor's formula generalized Cauchy' mean value theorem generalized Cauchy's formula.

Author Details

Jinfa Cheng