Variable Besov Spaces: Continuous Version

Variable Besov Spaces: Continuous Version

Year:    2019

Author:    Douadi Drihem

Journal of Mathematical Study, Vol. 52 (2019), Iss. 2 : pp. 178–226

Abstract

We introduce Besov spaces with variable smoothness and integrability by using the continuous version of Calderón reproducing formula. We show that our space is well-defined, i.e., independent of the choice of basis functions. We characterize these function spaces by so-called Peetre maximal functions and we obtain the Sobolev embeddings for these function spaces. We use these results to prove the atomic decomposition for these spaces.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v52n2.19.05

Journal of Mathematical Study, Vol. 52 (2019), Iss. 2 : pp. 178–226

Published online:    2019-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    49

Keywords:    Atom embeddings Besov space variable exponent.

Author Details

Douadi Drihem

  1. Continuous characterizations of weighted Besov spaces of variable smoothness and integrability

    Guo, Pengfei

    Wang, Shengrong

    Xu, Jingshi

    Filomat, Vol. 37 (2023), Iss. 29 P.9913

    https://doi.org/10.2298/FIL2329913G [Citations: 1]