Cubature Points Based Triangular Spectral Elements: An Accuracy Study

Year:    2018

Author:    Richard Pasquetti, Francesca Rapetti

Journal of Mathematical Study, Vol. 51 (2018), Iss. 1 : pp. 15–25

Abstract

We investigate the cubature points based triangular spectral element method and provide accuracy results for elliptic problems in non polygonal domains using various isoparametric mappings. The capabilities of the method are here again clearly confirmed.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v51n1.18.02

Journal of Mathematical Study, Vol. 51 (2018), Iss. 1 : pp. 15–25

Published online:    2018-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:    Spectral element method simplicial meshes cubature points Fekete points isoparametric mappings.

Author Details

Richard Pasquetti

Francesca Rapetti

  1. A New Efficient Explicit Deferred Correction Framework: Analysis and Applications to Hyperbolic PDEs and Adaptivity

    Micalizzi, Lorenzo | Torlo, Davide

    Communications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 3 P.1629

    https://doi.org/10.1007/s42967-023-00294-6 [Citations: 1]
  2. Spectral Analysis of High Order Continuous FEM for Hyperbolic PDEs on Triangular Meshes: Influence of Approximation, Stabilization, and Time-Stepping

    Michel, Sixtine | Torlo, Davide | Ricchiuto, Mario | Abgrall, Rémi

    Journal of Scientific Computing, Vol. 94 (2023), Iss. 3

    https://doi.org/10.1007/s10915-022-02087-0 [Citations: 3]
  3. A High-Order Lower-Triangular Pseudo-Mass Matrix for Explicit Time Advancement of hp Triangular Finite Element Methods

    Appleton, Jay Miles | Helenbrook, Brian T.

    SIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 3 P.1618

    https://doi.org/10.1137/19M1268471 [Citations: 0]