Global Regularity for the 2D Magneto-Micropolar Equations with Partial Dissipation

Global Regularity for the 2D Magneto-Micropolar Equations with Partial Dissipation

Year:    2016

Author:    Dipendra Regmi, Jiahong Wu

Journal of Mathematical Study, Vol. 49 (2016), Iss. 2 : pp. 169–194

Abstract

This paper studies the global existence and regularity of classical solutions to the 2D incompressible magneto-micropolar equations with partial dissipation. The magneto-micropolar equations model the motion of electrically conducting micropolar fluids in the presence of a magnetic field. When there is only partial dissipation, the global regularity problem can be quite difficult. We are able to single out three special partial dissipation cases and establish the global regularity for each case. As special consequences, the 2D Navier-Stokes equations, the 2D magnetohydrodynamic equations, and the 2D micropolar equations with several types of partial dissipation always possess global classical solutions. The proofs of our main results rely on anisotropic Sobolev type inequalities and suitable combination and cancellation of terms.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v49n2.16.05

Journal of Mathematical Study, Vol. 49 (2016), Iss. 2 : pp. 169–194

Published online:    2016-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords:    Global regularity magneto-micropolar equations partial dissipation.

Author Details

Dipendra Regmi

Jiahong Wu

  1. Large Time Behavior and Stability for Two-Dimensional Magneto-Micropolar Equations with Partial Dissipation

    Li, Ming | He, Jianxia

    Journal of Nonlinear Mathematical Physics, Vol. 30 (2023), Iss. 4 P.1567

    https://doi.org/10.1007/s44198-023-00144-2 [Citations: 0]
  2. Equivalence between invariant measures and statistical solutions for the 2D non‐autonomous magneto‐micropolar fluid equations

    Li, Yanjiao | Li, Xiaojun

    Mathematical Methods in the Applied Sciences, Vol. 45 (2022), Iss. 5 P.2638

    https://doi.org/10.1002/mma.7944 [Citations: 0]
  3. Global regularity of 2D Leray-alpha regularized incompressible magneto-micropolar equations

    Yuan, Baoquan | Qiao, Yuanyuan

    Journal of Mathematical Analysis and Applications, Vol. 474 (2019), Iss. 1 P.492

    https://doi.org/10.1016/j.jmaa.2019.01.057 [Citations: 2]
  4. Global well-posedness of 3D magneto-micropolar fluid equations with mixed partial viscosity near an equilibrium

    Wang, Yuzhu | Li, Weijia

    Zeitschrift für angewandte Mathematik und Physik, Vol. 72 (2021), Iss. 1

    https://doi.org/10.1007/s00033-020-01453-y [Citations: 6]
  5. The 2D magneto‐micropolar equations with partial dissipation

    Regmi, Dipendra

    Mathematical Methods in the Applied Sciences, Vol. 42 (2019), Iss. 12 P.4305

    https://doi.org/10.1002/mma.5651 [Citations: 5]
  6. Global regularity for the 2D magneto-micropolar equations with partial and fractional dissipation

    Yuan, Baoquan | Qiao, Yuanyuan

    Computers & Mathematics with Applications, Vol. 76 (2018), Iss. 10 P.2345

    https://doi.org/10.1016/j.camwa.2018.08.029 [Citations: 9]
  7. Global well-posedness for the 2D micropolar Bénard fluid system with mixed partial dissipation, angular viscosity and without thermal diffusivity

    Li, Xinliang | Tan, Zhong

    Zeitschrift für angewandte Mathematik und Physik, Vol. 73 (2022), Iss. 2

    https://doi.org/10.1007/s00033-022-01726-8 [Citations: 3]
  8. On two-dimensional incompressible magneto-micropolar system with mixed partial viscosity

    Ma, Liangliang

    Nonlinear Analysis: Real World Applications, Vol. 40 (2018), Iss. P.95

    https://doi.org/10.1016/j.nonrwa.2017.08.014 [Citations: 33]
  9. Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion

    Shang, Haifeng | Zhao, Jiefeng

    Nonlinear Analysis: Theory, Methods & Applications, Vol. 150 (2017), Iss. P.194

    https://doi.org/10.1016/j.na.2016.11.011 [Citations: 33]
  10. Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications

    Zhao, Caidi | Li, Yanjiao | Caraballo, Tomás

    Journal of Differential Equations, Vol. 269 (2020), Iss. 1 P.467

    https://doi.org/10.1016/j.jde.2019.12.011 [Citations: 44]
  11. Existence and Time Decay for Global Small Solution of 2D Generalized Magneto-Micropolar Equations

    Guo, Yana | Jia, Yan | Dong, Bo-Qing

    Acta Applicandae Mathematicae, Vol. 174 (2021), Iss. 1

    https://doi.org/10.1007/s10440-021-00421-6 [Citations: 3]
  12. Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation

    Wang, Yazhou | Wang, Yuzhu

    Electronic Research Archive, Vol. 32 (2024), Iss. 7 P.4416

    https://doi.org/10.3934/era.2024199 [Citations: 0]
  13. Large time behavior for two-dimensional magneto-micropolar equations with only micro-rotational dissipation and magnetic diffusion

    Shang, Haifeng | Gu, Chuanwei

    Applied Mathematics Letters, Vol. 99 (2020), Iss. P.105977

    https://doi.org/10.1016/j.aml.2019.07.008 [Citations: 5]
  14. Global existence and decay estimate of solutions to magneto-micropolar fluid equations

    Tan, Zhong | Wu, Wenpei | Zhou, Jianfeng

    Journal of Differential Equations, Vol. 266 (2019), Iss. 7 P.4137

    https://doi.org/10.1016/j.jde.2018.09.027 [Citations: 33]
  15. Global well-posedness of two-dimensional magneto-micropolar equations with partial dissipation

    Guo, Yana | Shang, Haifeng

    Applied Mathematics and Computation, Vol. 313 (2017), Iss. P.392

    https://doi.org/10.1016/j.amc.2017.06.017 [Citations: 8]
  16. Stability for a system of the 2D incompressible magneto-micropolar fluid equations with partial mixed dissipation

    Lin, Hongxia | Liu, Sen | Zhang, Heng | Sun, Qing

    Nonlinearity, Vol. 37 (2024), Iss. 5 P.055001

    https://doi.org/10.1088/1361-6544/ad3098 [Citations: 0]
  17. Stability and time decay rates of the 2D magneto-micropolar equations with partial dissipation

    Li, Ming

    Zeitschrift für angewandte Mathematik und Physik, Vol. 73 (2022), Iss. 3

    https://doi.org/10.1007/s00033-022-01740-w [Citations: 1]
  18. Global regularity for the 2D magnetic Bénard fluid system with mixed partial viscosity

    Ma, Liangliang

    Computers & Mathematics with Applications, Vol. 76 (2018), Iss. 9 P.2148

    https://doi.org/10.1016/j.camwa.2018.08.013 [Citations: 16]
  19. Large time decay of solutions for the 3D magneto-micropolar equations

    Li, Ming | Shang, Haifeng

    Nonlinear Analysis: Real World Applications, Vol. 44 (2018), Iss. P.479

    https://doi.org/10.1016/j.nonrwa.2018.05.013 [Citations: 29]
  20. Remarks on the global smooth solution of the 3D generalized magneto‐micropolar equations

    Wu, Jingbo | Wang, Qingqing | Zhang, Qiueyue | Dong, Bo‐Qing

    Mathematical Methods in the Applied Sciences, Vol. 47 (2024), Iss. 6 P.4185

    https://doi.org/10.1002/mma.9810 [Citations: 0]
  21. Global regularity for the 2D magneto‐micropolar system with partial and fractional dissipation

    Liu, Yujun

    Mathematical Methods in the Applied Sciences, Vol. 43 (2020), Iss. 5 P.2491

    https://doi.org/10.1002/mma.6058 [Citations: 3]
  22. Global regularity of 3D magneto-micropolar fluid equations

    Wang, Yinxia | Gu, Liuxin

    Applied Mathematics Letters, Vol. 99 (2020), Iss. P.105980

    https://doi.org/10.1016/j.aml.2019.07.011 [Citations: 11]
  23. Global existence of three-dimensional incompressible magneto-micropolar system with mixed partial dissipation, magnetic diffusion and angular viscosity

    Ma, Liangliang

    Computers & Mathematics with Applications, Vol. 75 (2018), Iss. 1 P.170

    https://doi.org/10.1016/j.camwa.2017.09.009 [Citations: 13]
  24. Global Regularity of 2D Incompressible Magneto-Micropolar Fluid Equations with Partial Viscosity

    Lin, Hongxia | Liu, Sen | Zhang, Heng | Bai, Ru

    Acta Mathematica Scientia, Vol. 43 (2023), Iss. 3 P.1275

    https://doi.org/10.1007/s10473-023-0316-z [Citations: 1]
  25. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids

    Zhao, Caidi | Li, Yanjiao | Łukaszewicz, Grzegorz

    Zeitschrift für angewandte Mathematik und Physik, Vol. 71 (2020), Iss. 4

    https://doi.org/10.1007/s00033-020-01368-8 [Citations: 20]
  26. Global well-posedness for the 2D micropolar Bénard convection system with mixed partial viscosity

    Li, Xinliang | Tan, Zhong

    Journal of Mathematical Analysis and Applications, Vol. 516 (2022), Iss. 1 P.126495

    https://doi.org/10.1016/j.jmaa.2022.126495 [Citations: 2]
  27. Global well‐posedness for incompressible flow in porous media with partial diffusion or fractional diffusion

    Guo, Yana | Shang, Haifeng

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 99 (2019), Iss. 6

    https://doi.org/10.1002/zamm.201700129 [Citations: 0]
  28. Mild Ill-Posedness for 2D Magneto-Micropolar Fluid Equations Near a Background Magnetic Field

    Zhao, Jiefeng

    SIAM Journal on Mathematical Analysis, Vol. 55 (2023), Iss. 5 P.5967

    https://doi.org/10.1137/22M1469432 [Citations: 0]
  29. Non–uniform decay of solutions to the incompressible magneto–micropolar fluids with/without magnetic diffusion and spin viscosity

    Wu, Wanping | Zhang, Yinghui

    Journal of Mathematical Physics, Vol. 64 (2023), Iss. 11

    https://doi.org/10.1063/5.0164843 [Citations: 1]
  30. Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation

    Shang, Haifeng | Gu, Chuanwei

    Zeitschrift für angewandte Mathematik und Physik, Vol. 70 (2019), Iss. 3

    https://doi.org/10.1007/s00033-019-1129-8 [Citations: 12]
  31. Stability and large time decay for the three-dimensional magneto-micropolar equations with mixed partial viscosity

    Li, Ming

    Zeitschrift für angewandte Mathematik und Physik, Vol. 74 (2023), Iss. 3

    https://doi.org/10.1007/s00033-023-01992-0 [Citations: 2]