Year: 2016
Author: Dipendra Regmi, Jiahong Wu
Journal of Mathematical Study, Vol. 49 (2016), Iss. 2 : pp. 169–194
Abstract
This paper studies the global existence and regularity of classical solutions to the 2D incompressible magneto-micropolar equations with partial dissipation. The magneto-micropolar equations model the motion of electrically conducting micropolar fluids in the presence of a magnetic field. When there is only partial dissipation, the global regularity problem can be quite difficult. We are able to single out three special partial dissipation cases and establish the global regularity for each case. As special consequences, the 2D Navier-Stokes equations, the 2D magnetohydrodynamic equations, and the 2D micropolar equations with several types of partial dissipation always possess global classical solutions. The proofs of our main results rely on anisotropic Sobolev type inequalities and suitable combination and cancellation of terms.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/jms.v49n2.16.05
Journal of Mathematical Study, Vol. 49 (2016), Iss. 2 : pp. 169–194
Published online: 2016-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 26
Keywords: Global regularity magneto-micropolar equations partial dissipation.
Author Details
-
Large Time Behavior and Stability for Two-Dimensional Magneto-Micropolar Equations with Partial Dissipation
Li, Ming | He, JianxiaJournal of Nonlinear Mathematical Physics, Vol. 30 (2023), Iss. 4 P.1567
https://doi.org/10.1007/s44198-023-00144-2 [Citations: 0] -
Equivalence between invariant measures and statistical solutions for the 2D non‐autonomous magneto‐micropolar fluid equations
Li, Yanjiao | Li, XiaojunMathematical Methods in the Applied Sciences, Vol. 45 (2022), Iss. 5 P.2638
https://doi.org/10.1002/mma.7944 [Citations: 0] -
Global regularity of 2D Leray-alpha regularized incompressible magneto-micropolar equations
Yuan, Baoquan | Qiao, YuanyuanJournal of Mathematical Analysis and Applications, Vol. 474 (2019), Iss. 1 P.492
https://doi.org/10.1016/j.jmaa.2019.01.057 [Citations: 2] -
Global well-posedness of 3D magneto-micropolar fluid equations with mixed partial viscosity near an equilibrium
Wang, Yuzhu | Li, WeijiaZeitschrift für angewandte Mathematik und Physik, Vol. 72 (2021), Iss. 1
https://doi.org/10.1007/s00033-020-01453-y [Citations: 6] -
The 2D magneto‐micropolar equations with partial dissipation
Regmi, Dipendra
Mathematical Methods in the Applied Sciences, Vol. 42 (2019), Iss. 12 P.4305
https://doi.org/10.1002/mma.5651 [Citations: 5] -
Global regularity for the 2D magneto-micropolar equations with partial and fractional dissipation
Yuan, Baoquan | Qiao, YuanyuanComputers & Mathematics with Applications, Vol. 76 (2018), Iss. 10 P.2345
https://doi.org/10.1016/j.camwa.2018.08.029 [Citations: 9] -
Global well-posedness for the 2D micropolar Bénard fluid system with mixed partial dissipation, angular viscosity and without thermal diffusivity
Li, Xinliang | Tan, ZhongZeitschrift für angewandte Mathematik und Physik, Vol. 73 (2022), Iss. 2
https://doi.org/10.1007/s00033-022-01726-8 [Citations: 3] -
On two-dimensional incompressible magneto-micropolar system with mixed partial viscosity
Ma, Liangliang
Nonlinear Analysis: Real World Applications, Vol. 40 (2018), Iss. P.95
https://doi.org/10.1016/j.nonrwa.2017.08.014 [Citations: 33] -
Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion
Shang, Haifeng | Zhao, JiefengNonlinear Analysis: Theory, Methods & Applications, Vol. 150 (2017), Iss. P.194
https://doi.org/10.1016/j.na.2016.11.011 [Citations: 33] -
Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications
Zhao, Caidi | Li, Yanjiao | Caraballo, TomásJournal of Differential Equations, Vol. 269 (2020), Iss. 1 P.467
https://doi.org/10.1016/j.jde.2019.12.011 [Citations: 44] -
Existence and Time Decay for Global Small Solution of 2D Generalized Magneto-Micropolar Equations
Guo, Yana | Jia, Yan | Dong, Bo-QingActa Applicandae Mathematicae, Vol. 174 (2021), Iss. 1
https://doi.org/10.1007/s10440-021-00421-6 [Citations: 3] -
Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation
Wang, Yazhou | Wang, YuzhuElectronic Research Archive, Vol. 32 (2024), Iss. 7 P.4416
https://doi.org/10.3934/era.2024199 [Citations: 0] -
Large time behavior for two-dimensional magneto-micropolar equations with only micro-rotational dissipation and magnetic diffusion
Shang, Haifeng | Gu, ChuanweiApplied Mathematics Letters, Vol. 99 (2020), Iss. P.105977
https://doi.org/10.1016/j.aml.2019.07.008 [Citations: 5] -
Global existence and decay estimate of solutions to magneto-micropolar fluid equations
Tan, Zhong | Wu, Wenpei | Zhou, JianfengJournal of Differential Equations, Vol. 266 (2019), Iss. 7 P.4137
https://doi.org/10.1016/j.jde.2018.09.027 [Citations: 33] -
Global well-posedness of two-dimensional magneto-micropolar equations with partial dissipation
Guo, Yana | Shang, HaifengApplied Mathematics and Computation, Vol. 313 (2017), Iss. P.392
https://doi.org/10.1016/j.amc.2017.06.017 [Citations: 8] -
Stability for a system of the 2D incompressible magneto-micropolar fluid equations with partial mixed dissipation
Lin, Hongxia | Liu, Sen | Zhang, Heng | Sun, QingNonlinearity, Vol. 37 (2024), Iss. 5 P.055001
https://doi.org/10.1088/1361-6544/ad3098 [Citations: 0] -
Stability and time decay rates of the 2D magneto-micropolar equations with partial dissipation
Li, Ming
Zeitschrift für angewandte Mathematik und Physik, Vol. 73 (2022), Iss. 3
https://doi.org/10.1007/s00033-022-01740-w [Citations: 1] -
Global regularity for the 2D magnetic Bénard fluid system with mixed partial viscosity
Ma, Liangliang
Computers & Mathematics with Applications, Vol. 76 (2018), Iss. 9 P.2148
https://doi.org/10.1016/j.camwa.2018.08.013 [Citations: 16] -
Large time decay of solutions for the 3D magneto-micropolar equations
Li, Ming | Shang, HaifengNonlinear Analysis: Real World Applications, Vol. 44 (2018), Iss. P.479
https://doi.org/10.1016/j.nonrwa.2018.05.013 [Citations: 29] -
Remarks on the global smooth solution of the 3D generalized magneto‐micropolar equations
Wu, Jingbo | Wang, Qingqing | Zhang, Qiueyue | Dong, Bo‐QingMathematical Methods in the Applied Sciences, Vol. 47 (2024), Iss. 6 P.4185
https://doi.org/10.1002/mma.9810 [Citations: 0] -
Global regularity for the 2D magneto‐micropolar system with partial and fractional dissipation
Liu, Yujun
Mathematical Methods in the Applied Sciences, Vol. 43 (2020), Iss. 5 P.2491
https://doi.org/10.1002/mma.6058 [Citations: 3] -
Global regularity of 3D magneto-micropolar fluid equations
Wang, Yinxia | Gu, LiuxinApplied Mathematics Letters, Vol. 99 (2020), Iss. P.105980
https://doi.org/10.1016/j.aml.2019.07.011 [Citations: 11] -
Global existence of three-dimensional incompressible magneto-micropolar system with mixed partial dissipation, magnetic diffusion and angular viscosity
Ma, Liangliang
Computers & Mathematics with Applications, Vol. 75 (2018), Iss. 1 P.170
https://doi.org/10.1016/j.camwa.2017.09.009 [Citations: 13] -
Global Regularity of 2D Incompressible Magneto-Micropolar Fluid Equations with Partial Viscosity
Lin, Hongxia | Liu, Sen | Zhang, Heng | Bai, RuActa Mathematica Scientia, Vol. 43 (2023), Iss. 3 P.1275
https://doi.org/10.1007/s10473-023-0316-z [Citations: 1] -
Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids
Zhao, Caidi | Li, Yanjiao | Łukaszewicz, GrzegorzZeitschrift für angewandte Mathematik und Physik, Vol. 71 (2020), Iss. 4
https://doi.org/10.1007/s00033-020-01368-8 [Citations: 20] -
Global well-posedness for the 2D micropolar Bénard convection system with mixed partial viscosity
Li, Xinliang | Tan, ZhongJournal of Mathematical Analysis and Applications, Vol. 516 (2022), Iss. 1 P.126495
https://doi.org/10.1016/j.jmaa.2022.126495 [Citations: 2] -
Global well‐posedness for incompressible flow in porous media with partial diffusion or fractional diffusion
Guo, Yana | Shang, HaifengZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 99 (2019), Iss. 6
https://doi.org/10.1002/zamm.201700129 [Citations: 0] -
Mild Ill-Posedness for 2D Magneto-Micropolar Fluid Equations Near a Background Magnetic Field
Zhao, Jiefeng
SIAM Journal on Mathematical Analysis, Vol. 55 (2023), Iss. 5 P.5967
https://doi.org/10.1137/22M1469432 [Citations: 0] -
Non–uniform decay of solutions to the incompressible magneto–micropolar fluids with/without magnetic diffusion and spin viscosity
Wu, Wanping | Zhang, YinghuiJournal of Mathematical Physics, Vol. 64 (2023), Iss. 11
https://doi.org/10.1063/5.0164843 [Citations: 1] -
Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation
Shang, Haifeng | Gu, ChuanweiZeitschrift für angewandte Mathematik und Physik, Vol. 70 (2019), Iss. 3
https://doi.org/10.1007/s00033-019-1129-8 [Citations: 12] -
Stability and large time decay for the three-dimensional magneto-micropolar equations with mixed partial viscosity
Li, Ming
Zeitschrift für angewandte Mathematik und Physik, Vol. 74 (2023), Iss. 3
https://doi.org/10.1007/s00033-023-01992-0 [Citations: 2]