A Nonhomogeneous Boundary Value Problem for the Boussinesq Equation on a Bounded Domain

A Nonhomogeneous Boundary Value Problem for the Boussinesq Equation on a Bounded Domain

Year:    2016

Author:    Sheng-Hao Li, Ivonne Rivas, Bing-Yu Zhang

Journal of Mathematical Study, Vol. 49 (2016), Iss. 3 : pp. 238–258

Abstract

In this paper, we study the well-posedness of an initial-boundary-value problem (IBVP) for the Boussinesq equation on a bounded domain,

\begin{cases}    &u_{tt}-u_{xx}+(u^2)_{xx}+u_{xxxx}=0,\quad x\in (0,1), \;\;t>0,\\    &u(x,0)=\varphi(x),\;\;\; u_t(x,0)=ψ(x),\\    &u(0,t)=h_1(t),\;\;\;u(1,t)=h_2(t),\;\;\;u_{xx}(0,t)=h_3(t),\;\;\;u_{xx}(1,t)=h_4(t).\\   \end{cases} It is shown that the IBVP is locally well-posed in the space $H^s (0,1)$ for any $s\geq 0$ with the initial data $\varphi,$ $\psi$ lie in $H^s(0,1)$ and $ H^{s-2}(0,1)$, respectively, and the naturally compatible boundary data $h_1,$ $h_2$ in the space $H_{loc}^{(s+1)/2}(\mathbb{R}^+)$, and $h_3 $, $h_4$ in the the space of $H_{loc}^{(s-1)/2}(\mathbb{R}^+)$ with optimal regularity.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v49n3.16.03

Journal of Mathematical Study, Vol. 49 (2016), Iss. 3 : pp. 238–258

Published online:    2016-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:    Boussinesq equation initial-boundary value problem local well-posedness.

Author Details

Sheng-Hao Li

Ivonne Rivas

Bing-Yu Zhang

  1. Wellposedness of the sixth order Boussinesq equation with non-homogeneous boundary values on a bounded domain

    Li, Shenghao

    Chen, Min

    Zhang, Bingyu

    Physica D: Nonlinear Phenomena, Vol. 389 (2019), Iss. P.13

    https://doi.org/10.1016/j.physd.2018.09.006 [Citations: 6]