Hermite Expansion of the Riemann Zeta Function

Hermite Expansion of the Riemann Zeta Function

Year:    2016

Author:    Bang-He Li

Journal of Mathematical Study, Vol. 49 (2016), Iss. 4 : pp. 319–324

Abstract

Let $ζ(s)$ be the Riemann zeta function, $s=\sigma+it$. For $0 < \sigma < 1$, we expand $ζ(s)$ as the following series convergent in the space of slowly increasing distributions with variable $t$ : $$ζ(\sigma+it)=\sum\limits^∞_{n=0}a_n(\sigma)ψ_n(t),$$ where $$ψ_n(t)=(2^nn!\sqrt{\pi})^{-1 ⁄ 2}e^{\frac{-t^2}{2}}H_n(t),$$  $H_n(t)$ is the Hermite polynomial, and $$a_n(σ)=2\pi(-1)^{n+1}ψ_n(i(1-σ))+(-i)^n\sqrt{2\pi}\sum\limits^∞_{m=1}\frac{1}{m^σ}ψ_n(1nm).$$ This paper is concerned with the convergence of the above series for $σ > 0.$ In the deduction, it is crucial to regard the zeta function as Fourier transfomations of Schwartz' distributions.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v49n4.16.01

Journal of Mathematical Study, Vol. 49 (2016), Iss. 4 : pp. 319–324

Published online:    2016-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    6

Keywords:    Riemann zeta function Hermite expansion Schwartz distributions.

Author Details

Bang-He Li