Elliptic Systems with a Partially Sublinear Local Term

Elliptic Systems with a Partially Sublinear Local Term

Year:    2015

Author:    Yongtao Jing, Zhaoli Liu

Journal of Mathematical Study, Vol. 48 (2015), Iss. 3 : pp. 290–305

Abstract

Let $1<p<2$. Under some assumptions on $V,$ $K,$ existence of infinitely many solutions $(u,\phi) ∈ H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)$ is proved for the Schrödinger-Poisson system $$\begin{cases} -\Delta u+V(x)u+\phi u=K(x)|u|^{p-2}u \  \  \ {\rm in}  \ \mathbb{R}^3,\\ -\Delta\phi=u^2 \  \  \ {\rm in} \ \mathbb{R}^3 \end{cases}$$ as well as for the Klein-Gordon-Maxwell system $$\begin{cases} -\Delta u+[V(x)-(\omega+e\phi)^2]u=K(x)|u|^{p-2}u \  \  \ {\rm in}  \ \mathbb{R}^3,\\ -\Delta\phi+e^2u^2\phi=-e\omega u^2 \  \  \ {\rm in} \ \mathbb{R}^3 \end{cases}$$ where $ω, e > 0.$ This is in sharp contrast to D'Aprile and Mugnai's non-existence results.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v48n3.15.07

Journal of Mathematical Study, Vol. 48 (2015), Iss. 3 : pp. 290–305

Published online:    2015-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Schrödinger-Poisson system Klein-Gordon-Maxwell system infinitely many solutions.

Author Details

Yongtao Jing

Zhaoli Liu

  1. Infinitely Many Solutions for Kirchhoff-Type Equations Involving Degenerate Operator

    Chen, J. | Li, L. | Chen, Sh.

    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), Vol. 57 (2022), Iss. 4 P.252

    https://doi.org/10.3103/S1068362322040045 [Citations: 0]
  2. Infinitely many solutions for Kirchhoff type equations involving degenerate operator

    Chen, J. | Chen, Sh. | Li, L.

    Proceedings of NAS RA. Mathematics, Vol. (2022), Iss. P.46

    https://doi.org/10.54503/0002-3043-2022.57.4-46-63 [Citations: 0]