Generalized Jacobi Spectral-Galerkin Method for Nonlinear Volterra Integral Equations with Weakly Singular Kernels

Generalized Jacobi Spectral-Galerkin Method for Nonlinear Volterra Integral Equations with Weakly Singular Kernels

Year:    2015

Author:    Jie Shen, Changtao Sheng, Zhongqing Wang

Journal of Mathematical Study, Vol. 48 (2015), Iss. 4 : pp. 315–329

Abstract

We propose a generalized Jacobi spectral-Galerkin method for the nonlinear Volterra integral equations (VIEs) with weakly singular kernels. We establish the existence and uniqueness of the numerical solution, and characterize the convergence of the proposed method under reasonable assumptions on the nonlinearity. We also present numerical results which are consistent with the theoretical predictions.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v48n4.15.01

Journal of Mathematical Study, Vol. 48 (2015), Iss. 4 : pp. 315–329

Published online:    2015-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:    Generalized Jacobi spectral-Galerkin method nonlinear Volterra integral equations with weakly singular kernels convergence analysis.

Author Details

Jie Shen

Changtao Sheng

Zhongqing Wang

  1. An hp-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels

    Wang, Lina | Tian, Hongjiong | Yi, Lijun

    Applied Numerical Mathematics, Vol. 161 (2021), Iss. P.218

    https://doi.org/10.1016/j.apnum.2020.11.006 [Citations: 10]
  2. Generalized log orthogonal functions spectral collocation method for two dimensional weakly singular Volterra integral equations of the second kind

    Huang, Qiumei | Wang, Min

    Numerical Methods for Partial Differential Equations, Vol. 40 (2024), Iss. 5

    https://doi.org/10.1002/num.23105 [Citations: 0]
  3. Крайові задачі для слабкосингулярних інтегральних рівнянь типу Гаммерштейна

    Boichuk, O. | Feruk, V.

    Ukrains’kyi Matematychnyi Zhurnal, Vol. 76 (2024), Iss. 1 P.62

    https://doi.org/10.3842/umzh.v76i1.7487 [Citations: 0]
  4. A space–time spectral Petrov–Galerkin method for nonlinear time fractional Korteweg–de Vries–Burgers equations

    Yu, Zhe | Sun, Jiebao | Wu, Boying

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 6 P.4348

    https://doi.org/10.1002/mma.7035 [Citations: 1]
  5. A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay

    Mokhtary, P. | Moghaddam, B. P. | Lopes, A. M. | Machado, J. A. Tenreiro

    Numerical Algorithms, Vol. 83 (2020), Iss. 3 P.987

    https://doi.org/10.1007/s11075-019-00712-y [Citations: 26]
  6. Spectral collocation method for system of weakly singular Volterra integral equations

    Gu, Zhendong

    Advances in Computational Mathematics, Vol. 45 (2019), Iss. 5-6 P.2677

    https://doi.org/10.1007/s10444-019-09703-y [Citations: 6]
  7. Two-dimensional Jacobi pseudospectral quadrature solutions of two-dimensional fractional Volterra integral equations

    Mittal, A. K.

    Calcolo, Vol. 60 (2023), Iss. 4

    https://doi.org/10.1007/s10092-023-00545-1 [Citations: 1]
  8. A fast and high-order numerical method for nonlinear fractional-order differential equations with non-singular kernel

    Lee, Seyeon | Lee, Junseo | Kim, Hyunju | Jang, Bongsoo

    Applied Numerical Mathematics, Vol. 163 (2021), Iss. P.57

    https://doi.org/10.1016/j.apnum.2021.01.013 [Citations: 6]
  9. Oversampling collocation method for the Volterra integral equation with contaminated data

    Zhao, Dazhi | Pu, Liang | Yu, Yan

    Calcolo, Vol. 59 (2022), Iss. 3

    https://doi.org/10.1007/s10092-022-00473-6 [Citations: 0]
  10. Generalized Jacobi spectral Galerkin method for fractional pantograph differential equation

    Yang, Changqing | Lv, Xiaoguang

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 1 P.153

    https://doi.org/10.1002/mma.6718 [Citations: 14]
  11. New spectral element method for Volterra integral equations with weakly singular kernel

    Zhang, Chao | Liu, Zhipeng | Chen, Sheng | Tao, DongYa

    Journal of Computational and Applied Mathematics, Vol. 404 (2022), Iss. P.113902

    https://doi.org/10.1016/j.cam.2021.113902 [Citations: 5]
  12. A new recursive formulation of the Tau method for solving linear Abel–Volterra integral equations and its application to fractional differential equations

    Talaei, Y. | Shahmorad, S. | Mokhtary, P.

    Calcolo, Vol. 56 (2019), Iss. 4

    https://doi.org/10.1007/s10092-019-0347-y [Citations: 7]
  13. An hp-version Legendre collocation method for the third-kind VIEs with nonlinear vanishing delay

    Guo, Yuling | Xu, Xiaoyu | Wang, Zicheng | Wang, Zhongqing

    Mathematics and Computers in Simulation, Vol. 223 (2024), Iss. P.338

    https://doi.org/10.1016/j.matcom.2024.04.016 [Citations: 1]
  14. An efficient numerical method for Volterra integral equation of the second kind with a weakly singular kernel

    Kong, Desong | Xiang, Shuhuang | Wu, Hongyu

    Journal of Computational and Applied Mathematics, Vol. 427 (2023), Iss. P.115101

    https://doi.org/10.1016/j.cam.2023.115101 [Citations: 2]
  15. On a Volterra type fractional integro-differential equation with degenerate kernel

    Yuldashev, Tursun K.

    INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, (2021), P.020016

    https://doi.org/10.1063/5.0057135 [Citations: 1]
  16. An Efficient Space–Time Method for Time Fractional Diffusion Equation

    Shen, Jie | Sheng, Chang-Tao

    Journal of Scientific Computing, Vol. 81 (2019), Iss. 2 P.1088

    https://doi.org/10.1007/s10915-019-01052-8 [Citations: 18]
  17. Superconvergence points of integer and fractional derivatives of special Hermite interpolations and its applications in solving FDEs

    Deng, Beichuan | Zhang, Jiwei | Zhang, Zhimin

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 3 P.1061

    https://doi.org/10.1051/m2an/2019012 [Citations: 1]
  18. An hp-Version Jacobi Spectral Collocation Method for the Third-Kind VIEs

    Wang, Zhongqing | Zhou, Min | Guo, Yuling

    Journal of Scientific Computing, Vol. 87 (2021), Iss. 1

    https://doi.org/10.1007/s10915-021-01426-x [Citations: 7]
  19. A Hybrid Spectral Element Method for Fractional Two-Point Boundary Value Problems

    Sheng, Changtao | Shen, Jie

    Numerical Mathematics: Theory, Methods and Applications, Vol. 10 (2017), Iss. 2 P.437

    https://doi.org/10.4208/nmtma.2017.s11 [Citations: 12]
  20. A Müntz-Collocation Spectral Method for Weakly Singular Volterra Integral Equations

    Hou, Dianming | Lin, Yumin | Azaiez, Mejdi | Xu, Chuanju

    Journal of Scientific Computing, Vol. 81 (2019), Iss. 3 P.2162

    https://doi.org/10.1007/s10915-019-01078-y [Citations: 30]
  21. A Fractional Spectral Collocation for Solving Second Kind Nonlinear Volterra Integral Equations with Weakly Singular Kernels

    Cai, Haotao

    Journal of Scientific Computing, Vol. 80 (2019), Iss. 3 P.1529

    https://doi.org/10.1007/s10915-019-00987-2 [Citations: 12]
  22. Boundary-Value Problems for Weakly Singular Integral Equations of Hammerstein Type

    Boichuk, Oleksandr | Feruk, Viktor

    Ukrainian Mathematical Journal, Vol. 76 (2024), Iss. 1 P.65

    https://doi.org/10.1007/s11253-024-02307-w [Citations: 0]
  23. A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions

    Zaky, Mahmoud A. | Ameen, Ibrahem G.

    Engineering with Computers, Vol. 37 (2021), Iss. 4 P.2623

    https://doi.org/10.1007/s00366-020-00953-9 [Citations: 27]
  24. Boundary-value problems for weakly singular integral equations

    Boichuk, Oleksandr | Feruk, Victor

    Discrete & Continuous Dynamical Systems - B, Vol. 27 (2022), Iss. 3 P.1379

    https://doi.org/10.3934/dcdsb.2021094 [Citations: 4]
  25. An hp-version Spectral Collocation Method for Nonlinear Volterra Integro-differential Equation with Weakly Singular Kernels

    Wang, Chuan-Li | Wang, Zhong-Qing | Jia, Hong-Li

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 2 P.647

    https://doi.org/10.1007/s10915-017-0373-3 [Citations: 21]
  26. A hybrid spectral method for the nonlinear Volterra integral equations with weakly singular kernel and vanishing delays

    Yao, Guoqing | Tao, DongYa | Zhang, Chao

    Applied Mathematics and Computation, Vol. 417 (2022), Iss. P.126780

    https://doi.org/10.1016/j.amc.2021.126780 [Citations: 4]
  27. An easy-to-implement recursive fractional spectral-Galerkin method for multi-term weakly singular Volterra integral equations with non-smooth solutions

    Talaei, Younes | Zaky, Mahmoud A. | Hendy, Ahmed S.

    Numerical Algorithms, Vol. 97 (2024), Iss. 3 P.1089

    https://doi.org/10.1007/s11075-023-01742-3 [Citations: 0]
  28. Efficient mapped Jacobi spectral method for integral equations with two-sided singularities

    Yang, Xiu | Sheng, Changtao

    Applied Numerical Mathematics, Vol. 206 (2024), Iss. P.94

    https://doi.org/10.1016/j.apnum.2024.08.003 [Citations: 0]
  29. A multi-domain spectral collocation method for Volterra integral equations with a weakly singular kernel

    Ma, Zheng | Alikhanov, Anatoly A. | Huang, Chengming | Zhang, Guoyu

    Applied Numerical Mathematics, Vol. 167 (2021), Iss. P.218

    https://doi.org/10.1016/j.apnum.2021.05.006 [Citations: 11]
  30. Shifted Jacobi spectral-Galerkin method for solving fractional order initial value problems

    Kim, Hyunju | Kim, Keon Ho | Jang, Bongsoo

    Journal of Computational and Applied Mathematics, Vol. 380 (2020), Iss. P.112988

    https://doi.org/10.1016/j.cam.2020.112988 [Citations: 5]
  31. A New Spectral Method Using Nonstandard Singular Basis Functions for Time-Fractional Differential Equations

    Liu, Wenjie | Wang, Li-Lian | Xiang, Shuhuang

    Communications on Applied Mathematics and Computation, Vol. 1 (2019), Iss. 2 P.207

    https://doi.org/10.1007/s42967-019-00012-1 [Citations: 7]