Regularity of Positive Solutions for an Integral System on Heisenberg Group

Regularity of Positive Solutions for an Integral System on Heisenberg Group

Year:    2014

Author:    Weiyang Chen, Xiaoli Chen

Journal of Mathematical Study, Vol. 47 (2014), Iss. 2 : pp. 208–220

Abstract

In this paper, we are concerned with the properties of positive solutions of the following nonlinear integral systems on the Heisenberg group $\mathbb{H}^n$, \begin{equation} \left\{\begin{array}{ll} u(x)=\int_{\mathbb{H}^n}\frac{v^{q}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ v(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ w(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)v^{q}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ \end{array}\right.\end{equation}
for $x\in \mathbb{H}^n$, where $0<\alpha<Q=2n+2$, $n\geq3$, $\beta\geq0$, $\alpha+\beta<Q$, and $p,q,r > 1$ satisfying $\frac{1}{p+1} $+ $\frac{1}{q+1} + \frac{1}{r+1} = \frac{Q+α+β}{Q}.$ We show that positive solution triples $(u,v,w)\in L^{p+1}(\mathbb{H}^n)\times L^{q+1}(\mathbb{H}^n)\times L^{r+1}(\mathbb{H}^n)$ are bounded and they converge to zero when $|x|→∞.$

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/jms.v47n2.14.05

Journal of Mathematical Study, Vol. 47 (2014), Iss. 2 : pp. 208–220

Published online:    2014-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    13

Keywords:    Ground state solutions Heisenberg group nonlinear integral system.

Author Details

Weiyang Chen

Xiaoli Chen

  1. Existence of Positive Solutions to Nonlinear Integral Equations with Weights on the Bounded Domains of the Heisenberg Group inSubcritical Case

    陈, 佳妮

    Advances in Applied Mathematics, Vol. 11 (2022), Iss. 04 P.1764

    https://doi.org/10.12677/AAM.2022.114193 [Citations: 0]