Year: 2023
Author: Xuetian Zhang, Chunrui Zhang
Journal of Nonlinear Modeling and Analysis, Vol. 5 (2023), Iss. 3 : pp. 580–596
Abstract
This paper mainly studies the dynamic properties of the forest beetle outbreak model. The existence of the positive equilibrium point and the local stability of the positive equilibrium point of the system are analyzed, and the relevant conclusions are drawn. After that, the existence of Turing instability, Hopf bifurcation and Turing-Hopf bifurcation are discussed respectively, and the necessary conditions for existence are given. Finally, the normal form of the Turing-Hopf point is calculated, and some dynamic properties at the point are analyzed by numerical simulation.
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.12150/jnma.2023.580
Journal of Nonlinear Modeling and Analysis, Vol. 5 (2023), Iss. 3 : pp. 580–596
Published online: 2023-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 17
Keywords: Reaction-diffusion equation Turing instability Hopf bifurcation Turing-Hopf bifurcation.