Homoclinic Orbits of a Quadratic Isochronous System by the Perturbation-Incremental Method

Homoclinic Orbits of a Quadratic Isochronous System by the Perturbation-Incremental Method

Year:    2021

Author:    Junhua Li, Hailing Wang, Zuxiong Li, Zhusong Chu, Chen Zhang

Journal of Nonlinear Modeling and Analysis, Vol. 3 (2021), Iss. 1 : pp. 115–130

Abstract

In this paper, the perturbation-incremental method is presented for the analysis of a quadratic isochronous system. This method combines the remarkable characteristics of the perturbation method and the incremental method. The first step is the perturbation method. Assuming that the parameter $\lambda$ is small, i.e. $\lambda\approx0$, the initial expression of the homoclinic orbit is obtained. The second step is the parameter incremental method. By extending the solution corresponding to small parameters to large parameters, we can get the analytical-expressions of homoclinic orbits.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.12150/jnma.2021.115

Journal of Nonlinear Modeling and Analysis, Vol. 3 (2021), Iss. 1 : pp. 115–130

Published online:    2021-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:    Perturbation-incremental method Homoclinic orbits Quadratic isochronous system.

Author Details

Junhua Li

Hailing Wang

Zuxiong Li

Zhusong Chu

Chen Zhang